7]
T
[
0
& (=i 3 Sradansy = [0
RS - o HATET £l F L=
TR sy eskeds amn [B
) 1= e gy P (E 4]
— =y = AR P ¥
= =3 — vemnm = wee
o - e e = 435
m e e Tpa Tl = 2
- ™ [Wy 7 aam
s e 1 e e ha F 11
. e W MIHE P 123
- ey [e = [l
" B Y]) [
SAIF pepn rarinn HATEE - T=1

Table Library 3.4.7
Developer's Manual

© 2005 Scientific Applications

version 1.7

Table Library Developer's Manual

Table of Contents

Chapter 1

Chapter 2

1
2
3

Chapter 3

1
2

Chapter 4

1
2

4 Cell SPaANNINGcvvviieeiiiee e

5

Chapter 5

1
2

Preface

TableModels

ListTableModelcccooviiiiiiii e
ObjectTableModel ..o
LiStTableMapcocveiiiiiiiiiiiee e

AdvancedJTable

Creating i

Inherent Featurescovveeeeiiiieieieeecee e,
Dummy Last COIUMNccoiiiiiiciiec e
Fixed First Columnccooiiiiiiieiiiicieee e
Table State s

CommOoN FEAtUIEScouiiiiiieieeeceeeee e
Autoresize Table COIUMNScooocviiiiiieiiieee e
Column Filter e
Reorderable Column Headerccccvveeeeiiiiiiieeeee e

Table Selections after data change

Cell SPANNING e
ROW Header e
Groupable HEAdErccoiuiiiiiiiei e
Locked ROWS/COIUMNSccocuuiiiiiiiiiiiee e
Visual APPEAIANCEccocuiiiiiiieiiiee et
EditOrS s

TreeTable (old impl.)

Creating i

TreeTableModelooviiivieiiiiee e

CreatiNng oo
TreeTableROWS ...
Getting to the dataccooiiiiiiiiiii e
TreeTableCompParatorscccoceiieiieee e
AGOregatorS oot
FOoOters

Aggregate RENAErErSccccevivciivieee e

Grouping Panelccocoiiiiii

Treetable (new impl.)

Creating e
TreeTableModelAdaptercccovveeeevvcciiieeee e,

© 2005 Scientific Applications

Contents]

I I == =T] 111 o To [SRR 20
RILGISRIEE o] (=3 N o To 1= TP P T PUPPPPPRPPURPR 20
ADSTrACITIEETADIEMOENotk e e s ab et e ek e e et et e e abn e e e e nbe e e enreeeannneeeas 21
MULADIETIEETADIEMOUEL ... ettt e e b e e et e e e sbb e e et e e e s anreeeannneeans 22

ComparableTreeTaBIEMOEL.............oi ittt et e e e sare e e e e e e nanneas 23
DefaultMutableTreeTabIEMOEL.............ii e b e e et e et e e e e snee e 24
ODJECLTIEETADIEMOUEL...... ..ttt e bt e et e e e e e e b e e sanr e e e asneeennnneas 24
TreeModelMap
DyNamiCTre@TaBIEMOUENoo ettt e e st e e st e e e sbb e e e b e e e s anbeeeannneeaas 25
(2 (=T 1] o o [TP PP PP PP PPPPRTOI 25
THEETADIEROWS. ...tttk eh et e et e e ea bt e ek e et e e s ket e o bt e e e s b e e e e kbt e e ek b et e easb e e e nnbreeebeneennbeeennee 26
(1= gl R (oIt g F= L T TP PRSP PR PPPPRTII 27
RN G K101 [ST0] q] o F= 1= 1o £ OO P POV PP PPPPPPPPPON 28
P oo (=T = 10 £ P PP VPP PPPPPPPPPO 31
Footers
RELGIERIE] (=11 [oTo [T 1 - o TP PU PR PPPRPPURPN 32
S Te] 1 (] T OO PO PRP PP 33
[1L =] o o T T O TP P PP PPRPUPPIN 33
DireCtoryTre@TaADIEMOUENoooiiiiei ettt b e e st e e e et e e e sbb e e e e b e e e s anreeeannneeans 33
REeMOLETIEETADIEMOUEL ...ttt ekt e e e b e e et e e e eae e e e be e e s anbeeeannneeeas 34

O T Lo (=T =T = RPN 34

I Oc] | IS o 1= 1 g o1 [o [P TP U PP PSP PUPRP 35

B GrOUPINGPANEN ...ttt e e e ettt e e e e s et b e e e e e e e e sanbaeeaae e s 35

Chapter 6 Sorting Data 36

R O ==L 1] T [P PP PP PP 36

A o] g o 1= L= L (o] £ P TP PP PR PPPPPPPP 37

R CT=] uu [gTo [N (o TN d 4 TN P\ - USSR 38

4 Single and MUlti COIUMN SOMTINGccoiiiiiiee e e e e e e e e s esraaees 39

5 Define which columns can be SOMEed ..o 39

6 Controlling the visual behaviour of SortTableModel ... 40

Chapter 7 Filtering Data 40

O 4 =T 1] T SRS 40

22 1= = PSR 41

R -1 o] [=T | = =P UPUETT TR 42

T { g [o (o TR 1 TN P\ v TR 42

5 Presenting filter OptioNS t0 the USEIcovi oo 43
A IO 1 1L =] = O USSPV PPTP
FilterTablePanel

FilterHeaderModel
Chapter 8 Caching

1 CacheableTableMOUEloo i e e e 46

2 CacheableTreeTablEMOUENcooiiiiiiii e e 46

K T - Vo o = USRS 47

© 2005 Scientific Applications

Il Table Library Developer's Manual

4 CachedLiStTabIeMOTE!cuueiiiiiiie et e e st e e et e e e srbeeeesnbeeeeanes 47

5 CachedTabIeMOUELooo ittt ettt e st e e e eneeas 47

Chapter 9 GroupTableHeader 48
I €1 oYU T o) Ir=1 0] [=T @401 1] s o1 o 1SRN 48

2 GroupTableColumMNMOUAELooiii i e s e e e s e saraeeeaeeean 49

3 GroupTableColumMNMOAEILISIENETcoviiiiiiiie e 49

4 USBOE oottt et e e e o e e e e e s e et e e e e e e e et e e e s e r et e e e s s 49

Chapter 10 Asynchronous Transfers (RemoteModels) 50
1 RemoOteTableMOAELcoo i st e e eneeas 51

2 RemoteTreeTableMOUELoeiiii e e st ee e e e s e snnraeeeae e s 51

3 REMOTETADIELISTENET ..ottt e e et e e e e s e s anb b e e e e e e e e sanbaeeeaaaean 51

S = LU (<] o= g = R RRPRRR 52

LI nd=T Lo [1igT o Y - 11 1SS 52

LS 1 [T TU PP PU PP PTPRP 52

Chapter 11 Locked Rows/Columns 52
I o Tl 1= 1= o] (11 (o Yo =] PSR TRR 52

2 LoCKedTableMOAEILISTENETcoiiiiiiiiiiiee ettt e s e e e e s et ee e e e s e snnraeeeaeeean 53

G I U E T o [P TP EP PR PPPPPPPP 53

Chapter 12 Cell Spanning 54
L SPANDIAWET ..ottt e oottt e e s e b et e e e e s b b e s et e e e e e b e e e e e e e e e e R nr e et e e e e e nrreeeeeeaanne 54

2 SPANMOUEL ... 55

3 SpanModelEvent and SPanMOAEILISTENEYcoooiiiiiiiiiiii e 56

Chapter 13 Styles 57
R O == 1] T P PP PP PP 57

2 DETAUITSIYIE ...ttt e e e e nb e e e e e e anneas 57

G IS 4 Y/ 1117 (oo = SRR 58

Chapter 14 JTableRowHeader 59
I O =T 1] T PSP PERPS 59

2 Controlling the Visual aPPEAIrANCEccooiiiiiiiiii et a e ea e 60

3 Setting the column WIdth ... e 60

4 Controlling the row header's VISIDIItY ..o 60

Chapter 15 TreeTableHeader 61
1 TreeTableColUMNMOUEcooiiiiii et e et e e e nbee e e aneeas 61

2 DefaultTreeTableColumNMOAENcoooiiiiiiiiie e e 62

© 2005 Scientific Applications

Contents v
3 TreeTableColumNnNMOAEIATAPLETuviiiie e e e s e e e e e e e saraeeeaee s 63
L U 1 o PSPPSR 65
Chapter 16 CheckBoxTree 65
1 CheckBoXTreeSeleCtioONMOUENooiiiiiiiiiii e 65
A Y- o [PSSP PTPPT 66
Chapter 17 TreeFilterHeaderModel 67
I OTe] 10 aqT o] a1 =T 41V F=T o] o 1= PP PPT T PPURTN 67
A Y- o [PSSP PUPTT 68
Chapter 18 VetoableTableColumnModel 69
1 VetoableTableColumnNMOEILISTENETuviiiiiiiiiiiee e e e 70
2 DefaultVetoableColumMNMOE!c.ooiiiiiiiiiie e e e 71
ICINOTe] [8107] 01\ oTo (=1 AVZ=1 Co] S0t (o7 =T o) 4 [0 o SRR 71
Chapter 19 TableAssistant 72
I O =1 1] Vo [P PPT T OPPURPN 72
2 AULOreSize Table COIUMNScooiiiii e et e e bt e e s e e e anbee e e aneeas 72
3 COUMN FIIEE ..o s 72
v/ Y o] =3 B =1 (o T EE OO PP PP PPPPPPPPPPNY 73
Chapter 20 TableReorder 73
I O 4 =T 1] Vo S SERRS 74
Chapter 21 AdvancedTableHeader 74
I O =T 1] Vo [PP PPT T PTPURTN 74
2 Specifying which columns can be dragged ... 75
Chapter 22 AdvancedJScrollPane 75
R O == 1] T P PP PP PP 75
Chapter 23 Saving/loading state 76
Yo] o A= = L TSP P PP PP P PPPTPPPPPN 76
A 1| =T = v 1 (YU N 76
I € 01U o I =L (= T PP U PP U P TP TP PPN 76
Chapter 24 Searching 77
1 SEArCRMOUEIEVENTcoiiiieii ettt e e e sttt e e e e e s et e e e e e e s anbateeeeeeesssnnaeeeeeesannne 77
2 SEAINCN PANEIS .o 77
3 TADIESEAICH ... e e e anreas 78
O <= 1 0] o] =R 78

© 2005 Scientific Applications

\% Table Library Developer's Manual

Chapter 25 Editors 78
B =1 (T =To [(o G PP TP PPPTPRO 78
2 TableCOMBDOBOXEGITONccuuiiiiiiiie ittt ettt e e et e e et e e et e e e aneeas 79
IS T= 1w gV = U T =T) (o SRR 79
Chapter 26 Exporting Data 80
1 DelimitedEXPOITIMBINGAGETccoiiuiiieiiiiie ettt e et s b e s et e e e e s e e e esb e e e s aneeas 80
2 XMLEXPOITMBINAGET ..ceeiiiiiiiiiieieie ettt ettt e ettt et et e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaanas 80
Chapter 27 Internationalization 81
7 T OO PSP PP PPPTPRPPRN 81
Chapter 28 Renderers 82
1 DEFAUITRENUEIEL ..ottt h et e s e b e e e bt e s be e s be e e nbe e e nnneennne s 82
WA ad o Yo [f=1STS] = T = =T g T 1= = S 82
3 SHZERENUEIEN ..tttk a et e bt e e s bt e et e e e bb e e e e e e e e e e b 82
O g LT g =] g To (=] =] TP PP PP PR PPPRPPPPPPIN 83
RS Y= n T aTe JR= W =] 0T [=] (= SRR 83
Chapter 29 Appendix 84
N o] o 1=T o [o [E PO P PRSP PP PP 84
22 N o] o =Y o To 1 Gl | SRS 85

© 2005 Scientific Applications

Preface 1

1 Preface

One of the most commonly used Java GUI widgets is the JTable. JTable's framework is
extremely flexible and powerful, yet lacks the functionality which is often required in modern
applications. By providing an extension to the JTable framework, our table library attempts to
make these missing features available to Java developers, without sacrificing simplicity or
performance. Moreover, the design of the library follows a minimalistic approach, featuring a
small hierarchy tree, which makes it fast and easy to understand and incorporate into existing
code.

The purpose of this document is to make developers familiar with Table Library and to
explain its main aspects. Please note that this guide is NOT intended to be exhaustive or
complete.

2 TableModels

In JTable's framework, a TableModel contains the data of the table. JTable interrogates this
data model so that it can paint itself accordingly. By employing the same mechanism and by
extending the TableModel interface, we managed to provide effects, such as sorting and
filtering, without the requirement of a special JTable subclass.

2.1 ListTableModel

We extended the TableModel interface with ListTableModel, that requires the tabular data to
be kept in a list structure. ListTableModel is the interface that is inherited by other
TableModels in our library to provide effects such as sorting (SortTableModel), filtering
(FilterTableModel) or tree-like viewing (TreeTableModel). ListTableModel extends the
TableModel interface and also defines methods for manipulating the data of a tabular data
model.

By implementing ListTableModel in your TableModel, it is assumed that the data are stored
in a collection indexed by row number. This collection is returned with the method:

public java.util.List getRows();

Hence, if we want to get the object at the 1st row:

Object rowObiject = ListTableModel.getRows().get(0);

Some additional methods are used to add and remove elements in the list. These are:

public void addRow(Object row);
public void addRows(List addedRows);

© 2005 Scientific Applications

Table Library Developer's Manual

2.2

public void clear();
public void removeRow(int row);
public void removeRows(int [] deletedRows);

The elements in the list represent the actual row data, which can be any Java object. To get a
reference to a specific column of a row data, use:

public Object getCellValue(Object row, int index);

For example, for a DefaultTableModel subclass implementing ListTableModel, the method's
body would be:

public Object getCellVValue(Object row, int index) {
return ((Vector) row).get(index);
I

The TableModels in the library (SortTableModel, FilterTableModel and TreeTableModel) all
require a ListTableModel in their constructor. Therefore, in order to use your own custom
TableModel in conjunction with these classes, your TableModel should implement the
ListTableModel interface. This can be very easily done. Please look in Appendix I, where the
source code listing for a ListTableModel implementation that extends
javax.swing.table.DefaultTableModel is presented.

ObjectTableModel

ObjectTableModel is a ListTableModel whose data is a collection of arbitrary Java Objects.
This abstract class uses an internal ArrayList structure to store the rows of a JTable.
Subclasses should implement the methods:

public Object getValueAt(Object rowObject, int index);
public void setValueAt(Object rowObject, Object aValue, int index);

, Which define how objects at a column index are retrieved/set respectively.

These methods should preferrably cast the supplied Object argument to an appropriate class
type, and use the index parameter to get to the actual cell value.

Also, the column names are specified in the constructor, or with the method:

public void setColumns(String[] columnNames);

Example: Make an ObjectTableModel for the object Employee given below:

public class Employee {

public String firstName;
public String lastName;

© 2005 Scientific Applications

TableModels

public Integer age;

Employee(String firstName, String lastName, int age) {
this.firstName = firstName;
this.lastName = lastName;
this.age = new Integer(age);

}

public class IDTableModel exends ObjectTableModel {
public IDTableModel() {
super(new String[]{"'First Name"', ""Last Name", ""Age"'});

}

public Object getValueAt(Object o, int index) {
Employee emp = (Employee) o;
Object ret = null;
switch (index) {

case 0: {
ret = emp.firstName;
break;
}
case 1: {
ret = emp.lastName;
break;
}
case 2: {
ret = emp.age;
break;
}
}
return ret;

public void setValueAt(Object o, Object aValue, int index) {
Employee emp = (Employee) o;
switch (index) {

case 0: {
emp.firstName = value.toString();
break;

}

case 1: {
lastName = value.toString();
break;

}

case 2: {
emp.age = Integer.valueOf(value.toString());
break;

}

© 2005 Scientific Applications

Table Library Developer's Manual

2.3

ListTableMap

ListTableMap defines a TableModel that wraps around a ListTableModel, which is passed
as an argument in the constructor. The methods of ListTableModel that are implemented are
nothing more than calls to the respective methods of the underlying ListTableModel. In
addition, events generated from the underlying ListTableModel are intercepted and sent to
ListTableMap's table model listeners.

Other TableModels in the library extend ListTableMap, such as SortTableModel,
FilterTableModel, TreeTableModel. All these ListTableMap's subclasses transform the
underlying data in some way. By chaining multiple ListTableMaps, a cumulative
transformation is achieved.

Example: Given the IDTableModel created in the previous section, make a sortable and
filterable data model.

/[create the chain of TableModels

IDTableModel originalModel = new IDTableModel();
FilterTableModel ftm = new FilterTableModel(originalModel);
SortTableModel stm = new SortTableModel(ftm);

/Iset the data model of the table to the last chained TableModel created.
JTable table = new JTable(stm);

OR
JTable table = new AdvancedJTable(stm);

AdvancedJTable

AdvancedJTable extends JTable, so it inherits all JTable's methods and properties.

In addition, it provides a rich set of features made available by other classes in the library.
More specifically, AdvancedJTable can:

Autoresize table columns upon double-clicking on a table column border.

Display a popup through which the columns of the table can be dynamically
added/removed.

Use a table header whose columns cannot be reordered with right mouse button clicks. You
can also specify which columns are allowed to be dragged and reordered.

Correctly handle selection changes when the tabular data are restructured.

Merge and split cells.

© 2005 Scientific Applications

AdvancedJTable 5

Display a row header.

Group column headers together.

Lock non-scrollable rows/columns on the edges of the table.
Use Styles for easy cell rendering.

Use additional cell editors and renderers.

Furthermore, AdvancedJTable includes some inherent features:

A dummy column may be added last to the table header with no data underneath, for
decorative purposes. See Dummy Last Column.

Make the first column of the table not movable. See Fixed First Column.
Programmatically alter the table columns displayed and their widths. See Table State.

Finally, by using specialized TableModels, AdvancedJTable manipulates the data in order to
provide for sorting and filtering effects.

3.1 Creating

AdvancedJTable has exactly the same constructors as JTable. You can therefore construct an
instance the same way you do with JTable.

Example:

/lconstruct an AdvancedJTable with 5 rows and 3 columns
AdvancedJTable table = new AdvancedJTable(5, 3);

/[construct an AdvancedJTable with a DefaultTableModel as its datamodel.
DefaultTableModel dtm = new DefaultTableModel();
AdvancedJTable table = new AdvancedJTable(dtm);

/lconstruct an AdvancedJTable with a couple of rows.
Object[][] rowData = new String[][] {

{""Mary", "Lloyds"},

{"*John", ""Berry"'}

I3
Object[] columns = new String[]{"*"Name"", "'Surname"'};
DefaultTableModel model = new DefaultTableModel(rowData, columns);
AdvancedJTable table = new AdvancedJTable(model);

3.2 Inherent Features

These features exist only in AdvancedJTable and its subclasses.

© 2005 Scientific Applications

6 Table Library Developer's Manual

3.2.1 Dummy Last Column

There is the option to add a dummy column to the table header with no data underneath, for
decorative purposes.

You can control the visibility of the dummy column with:
public void setShowDummyColumn(boolean showDummyColumn);
So,

AdvancedJTable table = new AdvancedJTable();
table.setShowDummyColumn(true);

This option is available ONLY if the table is enclosed by an AdvancedJScrollPane:
AdvancedJTable table = new AdvancedJTable();
table.setShowDummyColumn(true);

AdvancedJScrollPane scroller = new AdvancedJScrollPane();
scroller.setViewportView(table);

Finally, you can determine if the dummy column is present by calling:

public boolean getShowDummyColumn();

OR

public boolean isDummyColumn(int column);
3.2.2 Fixed First Column

You can make the first column of the table non-reorderable and irremovable by calling
AdvancedJTable's method:

public void setFirstColumnFixed(boolean isFirstColumnFixed);
So,

AdvancedJTable table = new AdvancedJTable();
table.setFirstColumnFixed(true);

The first column will now be locked in place.
If you try to drag another column over to the first column, your dragging will be cancelled
without moving the first column.

© 2005 Scientific Applications

AdvancedJTable 7

You can also query the state of the first column by calling:

public boolean isFirstColumnFixed();

Note: In order to make the first column non-reorderable and irremovable, AdvancedJTable
uses subclasses of DefaultTableColumnModel (AdvancedJTable.InnerTableColumnModel)
and JTableHeader (AdvancedJTable.InnerTableHeader) as its table column model and header

respectively. Therefore, if you would like to use your own table column model or header,
your classes must extend AdvancedJTable's inner classes mentioned above.

3.2.3 Table State

You can programmatically alter the table columns displayed and their widths by using:
public void setTableState(String state);

The string to pass in this method should be specially formatted as follows:

<state> = i1:w1,i2:w2,... where i is the column's model index and w its width.

You can also get a string of the table's state by calling:

public String getTableState();

Note: A column which is removed by calling this method can always be added later if its

model index is supplied. Only columns that are removed via the removeColumn method of
JTable are permanently removed from the table.

3.3 Common Features

The features described here are named common because they can be made available to
JTable's subclasses, other than AdvancedJTable. These features are described extensively in
their own section.

3.3.1 Autoresize Table Columns

You can automatically resize the column of a table to the greatest preferred width of all cells
under that column, when the column is double-clicked on its border.
See Table Assistant and Autoresize Table Columns for more information.

© 2005 Scientific Applications

Table Library Developer's Manual

3.3.2

3.3.3

3.34

3.3.5

3.3.6

3.3.7

3.3.8

Column Filter

You can filter which columns to appear on the table through a popup menu.
See Table Assistant and Column Filter for more information.

Reorderable Column Header

AdvancedTable uses a table header that does not let column reordering when the column is
being dragged with the right mouse button pressed. Additionally, you can specify which
columns are allowed to be dragged and reordered.

See AdvancedTableHeader for more information.

Table Selections after data change

Row selections are cleared after a data change event. AdvancedJTable is able to restore the
table's row selection after a data change.
See TableReorder for more information.

Cell Spanning

AdvancedJTable is able to merge and split cells.
See Cell Spanning for more information.

Row Header

AdvancedJTable provides a row header.
See JTableRowHeader for more information.

Groupable Header

AdvancedJTable's column header is a GroupTableHeader which provides for groupable
column headers.
See GroupTableHeader for more information.

Locked Rows/Columns

You can lock non-scrollable rows/columns on the edges of AdvancedJTable by using a
LockedModel.
See the more general Locked Rows/Columns chapter for more information.

© 2005 Scientific Applications

AdvancedJTable 9

3.3.9 Visual Appearance

AdvancedJTable uses specialized Objects for modifying its visual appearance.
See Styles for more information.

3.3.10 Editors

AdvancedJTable installs a DateEditor for editing Date values.
See Editors and Date Editor for more information.

4 TreeTable (old impl.)

WARNING: This chapter refers to the original TreeTable implementation, which is now
deprecated. In version 3.0, we introduced a more flexible TreeTable framework for dealing
with tree-tables in Java, which is contained in the com.sciapp.treetable package. You are
encouraged to use this new TreeTable and accompanying classes. We tried, where possible to
preserve the class names, so as to facilitate the transition. Due to this fact, one must be careful
not to mix classes from the com.sciapp.tree package with classes from the
com.sciapp.treetable package.

TreeTable is the combination of a tree and a table. You can use this component in order to
group several rows of a table in a single row. TreeTable extends AdvancedJTable and
therefore inherits all of its methods and properties. See AdvancedJTable for more
information. While TreeTable makes it possible to have a tree inside a table, a
TreeTableModel is the accompanying table model that creates and maintains a dynamic tree
structure. This structure is determined by the underlying data and by special objects, called
TreeTableComparators, that define how the grouping of rows should be performed. Finally,
the branch nodes (nodes that have children) of the tree structure are called aggregate rows,
and their cell values on the table are calculated with the help of Aggregators.

4.1 Creating

TreeTable uses a TreeTableModel as its table model, which can be specified at construction
time using the constructor:

public TreeTable(TreeTableModel model);
You can also create a TreeTable by specifying the underlying data with a ListTableModel:

public TreeTable(ListTableModel model);

© 2005 Scientific Applications

10

Table Library Developer's Manual

4.2

42.1

In this case, a TreeTableModel will be created automatically with the method:

protected static TreeTableModel createDefaultTreeTableModel(ListTableModel
tableModel);

The TreeTableModel created will provide a wrapping around the supplied ListTableModel,
and will also become the TreeTable's data model.

TreeTableModel

WARNING: Since version 3.0, where we introduced a new TreeTable implementation,
TreeTableModel has been replaced with DynamicTreeTableModel.

TreeTableModel is TreeTable's data model. Setting a model other than this, will result in an
exception being thrown. TreeTableModel is a ListTableMap that wraps around a
ListTableModel instance. When the data of the underlying model changes, TreeTableModel
dynamically builds a tree, whose structure depends on the actual data and on
TreeTableComparators, that define the way the grouping of rows should be performed.

Creating

By extending ListTableMap, TreeTableModel wraps around a ListTableModel that
provides the actual data. The ListTableModel to use is specified in the sole constructor:

public TreeTableModel(ListTableModel tableModel);

You can also set the ListTableModel instance later using ListTableMap's method:
public void setModel(ListTableModel newMaodel);

Example 1: Create a TreeTableModel and set it to a treetable.

/lcreate the table models.

ListTableModel flatModel = new DefaultListTableModel();

TreeTableModel ttm = new TreeTableModel(flatModel);

/lcreate the table
TreeTable table = new TreeTable(ttm);

Example 2: Let the TreeTable to create a TreeTableModel for us.

/[create the flat table model.
ListTableModel flatModel = new DefaultListTableModel();

© 2005 Scientific Applications

TreeTable (old impl.) 11

/lcreate the table
TreeTable table = new TreeTable(flatModel);

/lget an instance to the implicitly created TreeTableModel
TreeTableModel ttm = (TreeTableModel) table.getModel();

Example 3: Create a sortable and filterable TreeTableModel and set it to a treetable.

/lcreate the chain of table models.

ListTableModel flatModel = new DefaultListTableModel();
FilterTableModel ftm = new FilterTableModel(flatModel);
SortTableModel stm = new SortTableModel(ftm);
TreeTableModel ttm = new TreeTableModel(stm);

/lcreate the table
TreeTable table = new TreeTable(ttm);

/ltake care of the SortTableModel's header renderer
stm.setHeader(table.getTableHeader());

422 TreeTableRows

The nodes of the tree structure are instances of the abstract class TreeTableRow, which
extends DefaultMutableTreeNode. They are divided in:

1. DataRows: nodes that are associated with the actual data of the underlying
ListTableModel. These nodes cannot have children.

2. AdggregateRows: nodes that are not associated with the data of the underlying
ListTableModel, but that may provide information about several rows of the table. These
are further classifed into:

HeaderRows: branch nodes that have children and that can be expanded. HeaderRows
usually contain information about their children.

FooterRows: nodes placed at the bottom of each tree level. FooterRows usually
contain information about the rows above them. They are added to the tree as long as a
Footer is defined in the TreeTableModel.

A TreeTableRow is constructed by specifying the data row object and the index that
corresponds to that object in the data list of the underlying ListTableModel:

public TreeTableRow(Object o, int modellndex);
TreeTableRow also has methods that determine its type:

public boolean isAggregate();

© 2005 Scientific Applications

12

Table Library Developer's Manual

4.2.3

public boolean isHeader();
public boolean isFooter();

Finally, AggregateRow defines methods for getting and setting the aggregate values:

public Object getAggregateValue(int rowlndex, int columnindex);
public void setAggregateValue(Object value, int rowlndex, int columnindex);

Getting to the data

TreeTableModel builds the tree structure dynamically every time the underlying data
changes. To get from the “tree-view" to the original data model provided by the underlying
ListTableModel, you can use the following method:

public int getDataRow(int rowlIndex);

The above method assumes that rowlndex is a DataRow (single). In order to retrieve the
indexes for HeaderRows, use:

public int[] getDataRows(int rowlIndex);
public int[] getModellndexesUnderRow(int row, boolean sorted);
public int[] getModellndexesUnderRow(TreeTableRow row, boolean sorted);

Furthermore, there are methods for examining the nodes of the tree - the TreeTableRows:

public TreeTableRow getTreeRow(int rowlndex);
public int getLevel(int rowlIndex);

public boolean isAggregate(int rowlndex);

public boolean isFooter(int rowlndex);

public boolean isHeader(int rowlndex);

Example 1: Find the objects that correspond to a treetable's row selection. (using the user
object of the tree node)

/[table is the TreeTable model
int[] selectedRows = table.getSelectedRows();

TreeTableModel ttm = (TreeTableModel) table.getModel();

List treeList = ttm.getRows();

for (int i=0;i<selectedRows.length;i++) {
TreeTableRow treeRow = (TreeTableRow) treeL.ist.get(selectedRows[i]);
Object objectRow = treeRow.getUserObiject();

}

Example 2: Find the objects that correspond to a treetable's row selection. (using the
underlying ListTableModel)

© 2005 Scientific Applications

TreeTable (old impl.) 13

/[table is the TreeTable model
int[] selectedRows = table.getSelectedRows();

TreeTableModel ttm = (TreeTableModel) table.getModel();
ListTableModel wrappedModel = ttm.getModel();
for (int i=0;i<selectedRows.length;i++) {

int origlndex = ttm.getDataRow(selectedRows[i]);

Onject objectRow = wrappedModel.getRows().get(origindex);

4.2.4 TreeTableComparators

TreeTableComparators are used in order to dynamically group the rows of a TreeTable
component. TreeTableComparator implements the java.util. Comparator interface, thus the
method:

public int compare(Object 01, Object 02);
, should be implemented.

The supplied objects to the compare method above are the row data objects of the underlying
ListTableModel.

TreeTableModel manages a collection of TreeTableComparators. The collection can be
manipulated with the methods:

public void addRowComparator(TreeTableComparator newComparator);

public void insertRowComparator(TreeTableComparator newComparator, int index);
public TreeTableComparator removeRowComparator(int index);

public boolean removeRowComparator(TreeTableComparator comparator);

public TreeTableComparator setRowComparator(TreeTableComparator
newComparator, int index);

public TreeTableComparator[] getRowComparators();

public TreeTableComparator getRowComparator(int index);

A TreeTableComparator implementation, DefaultTreeTableComparator, compares row
data based on a single column. The comparator to use for the column is retrieved with
TreeTableModel's method:

public Comparator getDefaultComparator(Class columnClass);

Also, TreeTableModel installs comparators for all the common classes with the method:

protected void createDefaultComparators();

© 2005 Scientific Applications

Table Library Developer's Manual

You can assign the comparator to use for a column with:
public void setDefaultComparator(Class columnClass, Comparator comparator);

It is up to the developer to use the installed ‘class' comparators with their own
TreeTableComparator implementation.

Example 1: Create a TreeTableComparator that compares data based on the first column
/lttm is the TreeTableModel

TreeTableComparator myComparator = new TreeTableComparator(ttm) {
public int compare(Object 01, Object 02) {
//get the cell value for column 0
Object vall = model.getCellValue(ol, 0);
Object val2 = model.getCellValue(02, 0);

/lget a comparator from the treetable model using the object's class
Comparator ¢ = model.getDefaultComparator(vall.getClass());

/Iwe can use this comparator to make the comparison
int comparison = c.compare(vall, val2);

/lreturn
return comparison;

public boolean isGroupedByColumn(int column) {
return column == 0;
}

}

Example 2: Create a TreeTableComparator that compares data based on the first and the
second column

/Ittm is the TreeTableModel

TreeTableComparator myComparator = new TreeTableComparator(ttm) {
public int compare(Object 01, Object 02) {
/lget the cell value for column 0
Object vall = model.getCellVValue(ol, 0);
Object val2 = model.getCellValue(02, 0);

/lget the cell value for column 1
Object val3 = model.getCellVValue(ol, 1);
Object val4 = model.getCellValue(02, 1);

/lget a comparator for the first column from the treetable model using the

© 2005 Scientific Applications

TreeTable (old impl.) 15

object’s class
Comparator c1 = model.getDefaultComparator(vall.getClass());

/lget a comparator for the second column from the treetable model using
the object’s class

Comparator c2 = model.getDefaultComparator(val3.getClass());

/Iwe can use these comparators to make the comparison

int comparisonl = cl.compare(vall, val2);

int comparsion2 = c2.compare(val3, val4);

/lreturn
return comparisonl == 0 ? comparison2 : comparisonl;

public boolean isGroupedByColumn(int column) {
return column == 0 && column == 1;
}

}

Example 3: Create a TreeTableComparator that compares data based on the objects supplied.
We assume that the supplied objects implement the Comparable interface.

//ttm is the TreeTableModel
TreeTableComparator myComparator = new TreeTableComparator(ttm) {
public int compare(Object 01, Object 02) {
Comparable c1 = (Comparable) o1;
return cl.compareTo(02);

public boolean isGroupedByColumn(int column) {
return false;
}

3
425 Aggregators

Aggregators calculate and return values for the aggregate rows of a TreeTable component.
The value for the cell of an aggregate row is calculated with:

public Object getAggregateValue(int rowlndex, int columnindex);
Then, the value is assigned on the row with:
public Object prepare(AggregateRow row, int rowlndex, int columnindex);

, Which ensures that aggregate values are not calculated repeatedly.

© 2005 Scientific Applications

16

Table Library Developer's Manual

4.2.6

TreeTableModel defines methods for creating, assigning and retrieving the aggregators:

protected Aggregator createDefaultAggregator();

public void setDefaultAggregator(Aggregator aggregator);

public Aggregator getAggregator(int rowlndex, int columnindex);
public Aggregator getDefaultAggregator();

By default, a DefaultCell Aggregator is created which uses the installed
TreeTableComparators to calculate the aggregate cell values.

Footers

The Footer interface defines the place and number of FooterRows to add to a
TreeTableModel via the method:

public int getFooterSize(TreeTableRow row);

Footer implementations should return the number of footers to add under the supplied
TreeTableRow. An appropriate aggregator should also be used to calculate the cell values for
these FooterRows.

TreeTableModel defines methods for creating, assigning and retrieving the footer:

protected Footer createDefaultFooter();
public void setFooter(Footer footer);
public Footer getFooter();

TreeTableModel will use the assigned footer in order to add footer rows to the tree structure.
This is accomplished with the method:

protected void buildFooter();

Example: Create and install a custom footer and an accompanying aggregator that sums over
the integers values of the cells.

/lttm is the TreeTableModel

/lcreate the footer
Footer myFooter = new Footer() {
public int getFooterSize(TreeTableRow row) {
if (row.getLevel() == 0) return 0;
return 1;

© 2005 Scientific Applications

TreeTable (old impl.) 17

/[create the aggregator
Aggregator footerAggregator = new DefaultCellAggregator(ttm) {
public Object getAggregateValue(int rowlndex, int columnindex) {
if (columnindex == 4 && model.isFooter(rowlndex)) {
TreeTableRow node = model.getTreeRow(rowlndex);
TreeTableRow parent = (TreeTableRow) node.getParent();

int[] totalRows = model.getModelIndexesUnderRow(parent, false);
int sum = 0;
for (inti=0; i < totalRows.length; i++) {
Integer iv = (Integer)
model.getModel().getValueAt(totalRows[i], 4);
int ival = iv.intValue();

sum +=ival;
}
return new Integer(sum);
}
return super.getAggregateValue(rowlndex, columnindex);
}
b
/[set the footer

ttm.setFooter(myFooter);

/set the aggregator
ttm.setDefaultAggregator(footerAggregator);

4.3 Aggregate Renderers

An AggregateRenderer is used to render the TreeTable's aggregate rows. The aggregate
renderer for a cell is taken with either specifying the row and column index for the cell, or the
class of the cell's value:

public TableCellRenderer getAggregateCellRenderer(int row, int column);
public TableCellRenderer getDefaultAggregateRenderer(Class columnClass);

You can also set the based-on-class renderer with:

public void setDefaultAggregateRenderer(Class columnClass, TableCellRenderer
renderer);

By default, TreeTable will install DefaultAggregateRenderer instances for all the basic
classes (String, Object, Date, Boolean and Number).

© 2005 Scientific Applications

18 Table Library Developer's Manual
4.4 Cell Spanning
TreeTable extends AdvancedJTable and is therefore capable of cell spanning. TreeTable
overrides AdvancedJTable's method:
protected SpanDrawer createSpanDrawer();
, in order to set an inner DefaultSpanModel subclass, TreeTable.DefaultTreeSpanModel,
which spans the header rows of the treetable. Here is how DefaultTreeSpanModel is
implemented:
public class DefaultTreeSpanModel extends DefaultSpanModel {
private CellSpan cs;
/**
* Constructs a DefaultTreeSpanModel.
*/
public DefaultTreeSpanModel() {
cs = new CellSpan(0, 0, 0, CellSpan.ALL_COLUMNS);
}
public CellSpan getCellSpanAt(int row, int column) {
TreeTableModel model = (TreeTableModel) getModel();
if (model.isHeader(row)) {
cs.setSpannedRow(row);
return cs;
}
return super.getCellSpanAt(row, column);
}
}
45 Grouping Panel

GroupingPanel is a panel through which users can dynamically control the structure of a
TreeTable. GroupingPanel uses a box layout in order to layout a number of comboboxes,
whose items are populated with the columns of a table. By selecting a column in the combo
box, the appropriate DefaultTreeTableComparator is created and added to the associated
TreeTableModel. You can construct a GroupingPanel using the constructors:

public GroupingPanel(TreeTableModel model);
public GroupingPanel(TreeTableModel model, int axis);
public GroupingPanel(TreeTableModel model, int axis, String noGroupString);

You can also set and retrieve the maximum allowed number of groups with:

public void setMaximumGroups(int max_groups);

© 2005 Scientific Applications

TreeTable (old impl.) 19

public int getMaximumGroups();

5 Treetable (new impl.)

TreeTable is the combination of a tree and a table. You can use this component in order to
group several rows of a table in a single row. TreeTable extends AdvancedJTable and
therefore inherits all of its methods and properties. See AdvancedJTable for more
information. While TreeTable makes it possible to have a tree inside a table, a
TreeTableModel is the accompanying table model that creates and maintains a tree structure.
TreeTableModel contains methods for determining and changing the treetable's cell values at
each tree level.

5.1 Creating

You can create a TreeTable by specifying a TreeTableModel in the constructor:
public TreeTable(TreeTableModel model);

You can also create a TreeTable by specifying a TreeTableModelAdapter:
public TreeTable(TreeTableModelAdapter adapter);

Last, using the default no-argument constructor, a TreeTable is created having a
TreeTableModel that is returned by the static method:

protected static TreeTableModel createDefaultTreeTableModel();

By default, a DefaultMutableTreeTableModel instance is returned.
5.2 TreeTableModelAdapter

TreeTable's table model is a TreeTableModelAdapter which interfaces between a
TableModel and a TreeTableModel. TreeTable shares the JTree that is painted on the first
column of the table, with this TreeTableModel Adapter.

TreeTableModel has no knowledge of row indexes, but of object nodes. The actual row
index in the table is converted by TreeTableModelAdapter to a tree node.
TreeTableModel Adapter retrieves the tree node with:

public Object nodeForRow(int rowlIndex);

and calls TreeTableModel's corresponding method.

© 2005 Scientific Applications

20

Table Library Developer's Manual

5.3

53.1

The table below shows the conversion that takes place for the TableModel's methods that
concern a row index.

TreeTableModelAdapter method TreeTableModel method
getValueAt(int row, int column) getValueAt(Object node, int column)
isCellEditable(int row, int column) isCellEditable(Object node, int column)

setValueAt(Object value, int row, int setValueAt(Object value, Object node, int
column) column)

TreeTableModel

TreeTableModel is the model that is indirectly and transparently (through
TreeTableModelAdapter) used by a TreeTable. TreeTableModel is an interface that
extends javax.swing.tree. TreeModel and that has methods for querying a tree-table
structure. It resembles a TableModel in which the methods that bear an integer row argument
are replaced with an Object that defines the node at the particular tree branch. In addition,
TreeTableModel has methods for determining whether a tree node is an aggregate, footer or
header node. This information is supplemental to the model's function. It is basically used
when deciding how to draw the cell values by table cell renderers or Style objects.

TreeTable Nodes

Most of the TreeTableModel implementations in our framework, utilize TreeTableRow
objects as the tree's nodes. TreeTableRow extends
javax.swing.tree.DefaultMutableTreeNode, therefore inherits all its methods and
properties. A TreeTableRow provides the values for all cells in a tree node. This can be
achieved in either three ways or a combination of them:

1. By using the appropriate methods of TreeTableRow.

You can assign and retrieve the value that is displayed at the it column with the methods:
public Object getAggregateValue(int columnindex);

public void setAggregateValue(Object value, int columnindex);

public void setAggregateValues(Object[] values);

2. By making use of DefaultMutableTreeNode's user object property.

The value at the it column can be retrieved by setting a suitable object as the user object.
For example, consider the following Customer class:

public class Customer {

© 2005 Scientific Applications

Treetable (new impl.)

String firstName;

String lastName;

public Customer(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String getFirstName() {
return firstName;

public String getLastName() {
return lastName;
}

}
Assuming node is the DefaultMutableTreeNode:

Customer cust = new Customer(**John™, **Smith™);
node.setUserObject(cust);

The cell values are then:

Object userObject = node.getUserObject();
Customer cust = (Customer) userObject;
String firstName = cust.getFirstName();
String lastName = cust.getLastName();

3. By making use of TreeTableRow's modellndex attribute.

21

The model index can correspond to an element index in a list of objects. Once the element in

the list is retrieved, we can use this object to determine the cell's value:
Assuming node is the TreeTableRow and objectL.ist the list of objects:

int modellndex = node.getModellndex();
Object o0 = objectL.ist.get(modellndex);
Customer cust = (Customer) o;

String firstName = cust.getFirstName();
String lastName = cust.getLastName();

5.3.2 AbstractTreeTableModel

AbstractTreeTableModel provides for an abstract treetable model that implements some

common TreeTableModel methods. These are:

getRoot();
isAggregate(Object);

© 2005 Scientific Applications

22 Table Library Developer's Manual

isFooter(Object);
isHeader(Object);
removeTreeModelListener(TreeModelListener);
addTreeModelListener(TreeModelListener);
In addition, it contains methods for creating a TreeModelEvent and passing it to its
TreeModelListeners:
fireTreeNodesChanged(Object, Object [], int [], Object []);
fireTreeNodesInserted(Object, Object [], int [], Object []);
fireTreeNodesRemoved(Object, Object [], int [], Object []);
Subclasses of AbstractTreeTableModel are:
MutableTreeTableModel: allows you to dynamically add/remove tree nodes anywhere in
the tree. Also, DirectoryTreeTableModel displays a directory treetable structure.
TreeModelMap: uses a TreeModel as the underlying tree model that contains the tree
structure data.
These will be discussed later in this chapter.

5.3.3 MutableTreeTableModel

MutableTreeTableModel provides for a TreeTableModel whose nodes can be added or
removed dynamically anywhere in the tree.
In order to add a node, use the following method:

public void insertNodelnto(MutableTreeNode newChild, MutableTreeNode parent, int
index);

and to remove a node:

public void removeNodeFromParent(MutableTreeNode node);

You should define the columns and their corresponding column values class upon
construction time. This class assumes that javax.swing.tree. TreeNode objects will be used as

the tree's nodes.

MutableTreeTableModel is an abstract class. Its subclasses should only implement the
method:

public java.lang.Object getValueAt(java.lang.Object node, int column);

Next, we discuss ComparableTreeTableModel, whose tree structure is formed according to a
set of rules dictated by TreeTableComparators.

© 2005 Scientific Applications

Treetable (new impl.) 23

5.3.3.1 ComparableTreeTableModel

ComparableTreeTableModel is a MutableTreeTableModel subclass whose tree structure is
dictated by a dynamic set of rules. These rules are specified by TreeTableComparators.

ComparableTreeTableModel manages a collection of TreeTableComparators. The collection
can be manipulated with the methods:

public void addRowComparator(TreeTableComparator newComparator);

public void insertRowComparator(TreeTableComparator newComparator, int index);
public TreeTableComparator removeRowComparator(int index);

public boolean removeRowComparator(TreeTableComparator comparator);

public TreeTableComparator setRowComparator(TreeTableComparator
newComparator, int index);

public TreeTableComparator[] getRowComparators();

public TreeTableComparator getRowComparator(int index);

A TreeTableComparator implementation, TreeNodeComparator, compares two tree nodes
between them based on a single column. This differs from DefaultTreeTableComparator,
used by DynamicTreeTableModel, which compares the row objects of a tree node. The
comparator to use for the column is retrieved with ComparableTreeTableModel's method:
public Comparator getDefaultComparator(Class columnClass);

Also, ComparableTreeTableModel installs comparators for all the common classes with the
method:

protected void createDefaultComparators();
You can assign the comparator to use for a column with:
public void setDefaultComparator(Class columnClass, Comparator comparator);

ComparableTreeTableModel has methods for adding nodes to the tree, taking into account
the installed comparators.

To add a new node, you can use the method:
public void addNode(DefaultMutableTreeNode node);
The methods:

public void add(List data);
public void add(Object nodeData);

can also be used for adding nodes, for which one or more leaf nodes will be created

© 2005 Scientific Applications

24 Table Library Developer's Manual

automatically with:
protected abstract DefaultMutableTreeNode createleafNode(Object data);
Non-leaf (group) nodes will be created automatically with:

protected abstract DefaultMutableTreeNode
createNonLeafNode(DefaultMutableTreeNode child);

Finally, for re-creating the tree, when one or more comparators have changed, the

protected abstract DefaultMutableTreeNode
createNonLeafNode(DefaultMutableTreeNode child);

method needs to be implemented.
WARNING: In ComparableTreeTableModel's context, the method:

public void insertNodelnto(MutableTreeNode newChild, MutableTreeNode parent, int
index);

should never be used to add a node, unless the correct index to place the new node is known.

Next, we discuss two subclasses of MutableTreeTableModel,
DefaultMutableTreeTableModel and ObjectTreeTableModel.

5.3.3.2 DefaultMutableTreeTableModel

DefaultMutableTreeTableModel is a treetable model whose nodes' cell value depends on the
aggregate values of a TreeTableRow. Thus this class assumes that the nodes of the tree are
TreeTableRow objects.

The value at each treetable cell is retrieved with TreeTableRow's method:

public Object getAggregateValue(int columnindex);
5.3.3.3 ObjectTreeTableModel

ObjectTreeTableModel is a treetable model whose nodes' cell value depends on the user
object attribute of a DefaultMutableTreeNode.

The user object is retrieved with DefaultMutableTreeNode's method:

public Object getUserObject();

© 2005 Scientific Applications

Treetable (new impl.) 25

Then, the user object is passed to the method:
public Object getObjectAt(Object userObject, int column);
, S0 that to return a value for the specific treetable cell.

ObjectTreeTableModel is an abstract class. Subclasses need only provide the column names
and classes and implement the getObjectAt method described above.

5.3.4 TreeModelMap

TreeModelMap wraps around a tree model, which contains the actual tree structure data.
Calls to tree model's methods are passed on to the underlying tree model. TreeModelMap also
assumes that the tree's nodes are javax.swing.TreeNode objects and thus, includes methods
that facilitates the creation of TreeModelEvents.

You can assign and retrieve the underlying tree model with these methods respectively:

public void setTreeModel(TreeModel newModel);
public TreeModel getTreeModel();

5.3.5 DynamicTreeTableModel

DynamicTreeTableModel is a treetable model whose tree strucutre is created dynamically
every time the data stored in an underlying ListTableModel changes. When this occurs,
DynamicTreeTableModel dynamically builds a tree, whose structure depends on the actual
data and on TreeTableComparators,

that define the way the grouping of rows should be performed.

5.3.5.1 Creating

DynamicTreeTableModel wraps around a ListTableModel that provides the actual data.
The ListTableModel to use is specified in the sole constructor:

public DynamicTreeTableModel(ListTableModel tableModel);
You can also set the ListTableModel instance later using the method:
public void setModel(ListTableModel newMaodel);

Example 1: Create a DynamicTreeTableModel and set it to a treetable.

/Icreate the table models.

© 2005 Scientific Applications

26 Table Library Developer's Manual

ListTableModel flatModel = new DefaultListTableModel();
DynamicTreeTableModel ttm = new DynamicTreeTableModel(flatModel);

/lcreate the table
TreeTable table = new TreeTable(ttm);

Example 2: Create a sortable and filterable DynamicTreeTableModel and set it to a treetable.

/lcreate the chain of table models.

ListTableModel flatModel = new DefaultListTableModel();
FilterTableModel ftm = new FilterTableModel(flatModel);
SortTableModel stm = new SortTableModel(ftm);
DynamicTreeTableModel ttm = new DynamicTreeTableModel(stm);

/lcreate the table
TreeTable table = new TreeTable(ttm);

/ltake care of the SortTableModel's header renderer
stm.setHeader(table.getTableHeader());

/[create the FilterHeaderModel
FilterHeaderModel fhm = new CustomPopupFilterHeaderModel();

/lassign AdvancedJTable's header to the FilterHeaderModel
fhm.setTableHeader((FilterTableHeader) table.getTableHeader());

[/lattach FilterHeaderModel to the table
fhm.attachToTable(table);

5.3.5.2 TreeTableRows

DynamicTreeTableModel nodes consist of instances of the abstract class TreeTableRow,
which extends DefaultMutableTreeNode. They are divided in:

1. DataRows: nodes that are associated with the actual data of the underlying
ListTableModel. The association is made through the modelindex attribute. These nodes
cannot have children.

2. AaggregateRows: nodes that are not associated with the data of the underlying
ListTableModel, but that may provide information about several rows of the table. These
are further classifed into:

HeaderRows: branch nodes that have children and that can be expanded. HeaderRows
usually contain information about their children.

FooterRows: nodes placed at the bottom of each tree level. FooterRows usually
contain information about the rows above them. They are added to the tree as long as a
Footer is defined in the DynamicTreeTableModel.

© 2005 Scientific Applications

Treetable (new impl.) 27

A TreeTableRow is constructed by specifying the data row object and the index that
corresponds to that object in the data list of the underlying ListTableModel:

public TreeTableRow(Object o, int modellndex);
TreeTableRow also has methods that determine its type:

public boolean isAggregate();
public boolean isHeader();
public boolean isFooter();

Finally, there are methods for getting and setting the aggregate values:

public Object getAggregateValue(int rowlndex, int columnindex);
public void setAggregateValue(Object value, int rowIndex, int columnindex);

5.3.5.3 Getting to the data

DynamicTreeTableModel builds the tree structure dynamically every time the underlying
data changes. To get from the "tree-view" to the original data model provided by the
underlying ListTableModel, you can use the following method:

public int getDataRow(TreeTableRow node);

The above method assumes that node is a DataRow (no-children). In order to retrieve the
indexes for HeaderRows, use:

public int[] getDataRows(TreeTableRow node);
public int[] getModellndexesUnderRow(TreeTableRow node, boolean sorted);

Example 1: Find the objects that correspond to a treetable's row selection. (using the user
object of the tree node)

/Itable is a TreeTable
int[] selectedRows = table.getSelectedRows();

TreeTableModelAdapter adapter = (TreeTableModelAdapter) table.getModel();
List treeList = ttm.getRows();
for (int i=0;i<selectedRows.length;i++) {

TreeTableRow treeRow = (TreeTableRow)
adapter.nodeForRow(selectedRows[i]);

Object objectRow = treeRow.getUserObiject();
}

Example 2: Find the objects that correspond to a treetable's row selection. (using the
underlying ListTableModel)

© 2005 Scientific Applications

28

Table Library Developer's Manual

5354

/[table is the TreeTable model
int[] selectedRows = table.getSelectedRows();

TreeTableModelAdapter adapter = (TreeTableModelAdapter) table.getModel();
DynamicTreeTableModel ttm = (DynamicTreeTableModel)
adapter.getTreeTableModel();
ListTableModel wrappedModel = ttm.getModel();
for (int i=0;i<selectedRows.length;i++) {

int origlndex = ttm.getDataRow(selectedRows[i]);

Onject objectRow = wrappedModel.getRows().get(origindex);

TreeTableComparators

TreeTableComparators are used in order to dynamically group the rows of a TreeTable
component. TreeTableComparator implements the java.util. Comparator interface, thus the
method:

public int compare(Object 01, Object 02);
, should be implemented.

The supplied objects to the compare method above are the row data objects of the underlying
ListTableModel.

DynamicTreeTableModel manages a collection of TreeTableComparators. The collection can
be manipulated with the methods:

public void addRowComparator(TreeTableComparator newComparator);

public void insertRowComparator(TreeTableComparator newComparator, int index);
public TreeTableComparator removeRowComparator(int index);

public boolean removeRowComparator(TreeTableComparator comparator);

public TreeTableComparator setRowComparator(TreeTableComparator
newComparator, int index);

public TreeTableComparator[] getRowComparators();

public TreeTableComparator getRowComparator(int index);

A TreeTableComparator implementation, DefaultTreeTableComparator, compares row
data based on a single column. The comparator to use for the column is retrieved with
DynamicTreeTableModel's method:

public Comparator getDefaultComparator(Class columnClass);

Also, DynamicTreeTableModel installs comparators for all the common classes with the
method:

© 2005 Scientific Applications

Treetable (new impl.) 29

protected void createDefaultComparators();
You can assign the comparator to use for a column with:
public void setDefaultComparator(Class columnClass, Comparator comparator);

It is up to the developer to use the installed ‘class' comparators with their own
TreeTableComparator implementation.

Example 1: Create a TreeTableComparator that compares data based on the first column
/lttm is the TreeTableModel

class FirstColumnTreeTableComparator implements TreeTableComparator {
DynamicTreeTableModel model;
FirstColumnTreeTableComparator(DynamicTreeTableModel model) {
this.model = model;
}

public int compare(Object 01, Object 02) {
//get the cell value for column 0
Object vall = model.getCellValue(ol, 0);
Object val2 = model.getCellValue(02, 0);

/lget a comparator from the treetable model using the object's class
Comparator ¢ = model.getDefaultComparator(vall.getClass());

/Iwe can use this comparator to make the comparison
int comparison = c.compare(vall, val2);

/lreturn
return comparison;

public boolean isGroupedByColumn(int column) {
return column ==0;
}

}

Example 2: Create a TreeTableComparator that compares data based on the first and the
second column

/Ittm is the TreeTableModel

class MultipleColumnTreeTableComparator implements TreeTableComparator {
DynamicTreeTableModel model;
FirstColumnTreeTableComparator(DynamicTreeTableModel model) {
this.model = model;

© 2005 Scientific Applications

30

Table Library Developer's Manual

}

public int compare(Object 01, Object 02) {

object's class

/lget the cell value for column 0

Object vall = model.getCellValue(ol, 0);

Object val2 = model.getCellValue(02, 0);

/lget the cell value for column 1

Object val3 = model.getCellValue(ol, 1);

Object val4 = model.getCellValue(02, 1);

/lget a comparator for the first column from the treetable model using the
Comparator c1 = model.getDefaultComparator(vall.getClass());

/lget a comparator for the second column from the treetable model using

the object's class

Comparator c2 = model.getDefaultComparator(val3.getClass());

/Iwe can use these comparators to make the comparison
int comparisonl = cl.compare(vall, val2);
int comparsion2 = c2.compare(val3, val4);

/lreturn
return comparisonl == 0 ? comparison2 : comparisonl;

public boolean isGroupedByColumn(int column) {

}
}

return column == 0 || column == 1;

Example 3: Create a TreeTableComparator that compares data based on the objects supplied.
We assume that the supplied objects implement the Comparable interface.

/lttm is the TreeTableModel

class ComparableTreeTableComparator implements TreeTableComparator {
public int compare(Object 01, Object 02) {

Comparable c1 = (Comparable) o1;
return cl.compareTo(02);

public boolean isGroupedByColumn(int column) {

}

return false;

© 2005 Scientific Applications

Treetable (new impl.) 31

5.3.5.5 Aggregators

Aggregators calculate and return values for the aggregate rows of a TreeTable component.
The value for the cell of an aggregate row is calculated with:

public Object getAggregateValue(AggregateRow node, int columnindex);
Then, the value is assigned on the row with:

public Object prepare(AggregateRow row, int columnindex);

, Which ensures that aggregate values are not calculated repeatedly.

DynamicTreeTableModel defines methods for creating, assigning and retrieving the
aggregators:

protected Aggregator createDefaultAggregator();

public void setDefaultAggregator(Aggregator aggregator);
public Aggregator getAggregator(int columnindex);
public Aggregator getDefaultAggregator();

By default, a DefaultCellAggregator is created which uses the installed
TreeTableComparators to calculate the aggregate cell values.

5.3.5.6 Footers

The Footer interface defines the place and number of FooterRows to add to a
DynamicTreeTableModel via the method:

public int getFooterSize(TreeTableRow row);

Footer implementations should return the number of footers to add under the supplied
TreeTableRow. An appropriate aggregator should also be used to calculate the cell values for
these FooterRows.

DynamicTreeTableModel defines methods for creating, assigning and retrieving the footer:
protected Footer createDefaultFooter();

public void setFooter(Footer footer);

public Footer getFooter();

DynamicTreeTableModel will use the assigned footer in order to add footer rows to the tree
structure. This is accomplished with the method:

protected void buildFooter();

© 2005 Scientific Applications

32 Table Library Developer's Manual

Example: Create and install a custom footer and an accompanying aggregator that sums over
the integers values of the cells.

/lttm is the TreeTableModel

/lcreate the footer
Footer myFooter = new Footer() {
public int getFooterSize(TreeTableRow row) {
if (row.getLevel() == 0) return 0;
return 1;

}

/[create the aggregator
Aggregator footerAggregator = new DefaultCellAggregator(ttm) {
public Object getAggregateValue(AggregateRow node, int columnindex) {
if (columnindex == 4 && node.isFooter()) {
TreeTableRow parent = (TreeTableRow) node.getParent();

int[] totalRows = model.getModelIndexesUnderRow(parent, false);
int sum = 0;
for (inti=0; i < totalRows.length; i++) {
Integer iv = (Integer)
model.getModel().getValueAt(totalRows[i], 4);
int ival = iv.intValue();

sum +=ival;
}
return new Integer(sum);
}
return super.getAggregateValue(rowlndex, columnindex);
}
I
/[set the footer

ttm.setFooter(myFooter);

/Iset the aggregator
ttm.setDefaultAggregator(footer Aggregator);

5.3.6 TreeTableModelMap

TreeTableModelMap extends TreeModelMap and wraps around a TreeTableModel, which
contains the actual tree structure data. Calls to treetable model's methods are passed on to the
underlying treetable model.

© 2005 Scientific Applications

Treetable (new impl.) 33

TreeTableModelMap also implements the ReorderModel, ReorderListener and
CacheableTreeTableModel interfaces, to provide for caching and to be able to track the
reordering of tree table rows. This functionality will be valid only if the treetable model that
is passed in the constructor is also a ReorderModel and/or a CacheableTreeTableModel.

Next, we discuss two usefull subclasses, DefaultSortTreeTableModel and

DefaultFilterTreeTableModel, which can sort and filter the tree nodes of a treetable model
respectively.

5.3.7 Sorting

Sorting capabilities are added to a TreeTableModel by wrapping it around a
DefaultSortTreeTableModel. This class uses an internal SortTableModel instance to sort
the children of each group row in the underlying treetable model.

The sort tablemodel is retrieved with the method:

public SortTableModel getSortTableModel();

You can customize the sorting behaviour by manipulating this SortTableModel instance.

5.3.8 Filtering

Filtering capabilities are added to a TreeTableModel by wrapping it around a
DefaultFilterTreeTableModel. This class uses an internal FilterTableModel instance to
filter the children of each group row in the underlying treetable model.

The filter tablemodel is retrieved with the method:
public FilterTableModel getFilterTableModel();

You can customize the filtering behaviour by manipulating this FilterTableModel instance.

5.3.9 DirectoryTreeTableModel

DirectoryTreeTableModel is the treetable model that can hold a directory structure.
DirectoryTreeTableModel displays the filename, size, type and modifed date of a file or
directory. Additionally, the corresponding icon is drawn next to the filename text.

The nodes of a DirectoryTreeTableModel are either HeaderRow (the directories) or DataRow
objects (the files). The files inside a directory are retrieved only when that directory is
expanded. To ensure that this is done only once, DirectoryTreeTableModel takes advantage
of HeaderRow's methods:

© 2005 Scientific Applications

34 Table Library Developer's Manual

public boolean isCountEvaluated();
public void setCountEvaluated(boolean countEval);

NOTE: You can use DefaultSortTreeTableModel and DefaultFilterTreeTableModel in
conjunction with DirectoryTreeTableModel to achieve a sorting and filtering effect:

DirectoryTreeTableModel dtm = new DirectoryTreeTableModel();
DefaultFilterTreeTableModel ftm = new DefaultFilterTreeTableModel(dtm);
DefaultSortTreeTableModel stm = new DefaultSortTreeTableModel(ftm);

Extra customization is needed for TreeTable to paint sorting and filtering events:

TreeTable table = new TreeTable();

FilterHeaderModel ft = new CustomPopupFilterHeaderModel();
ft.setFilterMode(ft. ALL_VALUES_MODE);
ft.setTableHeader((com.sciapp.filter.FilterTableHeader) getTableHeader());
ft.attachToTable(table, ftm.getFilterTableModel());

stm.getSortTableModel().setComparator(0, new FileRowComparator());
stm.getSortTableModel().setHeader(getTableHeader());
stm.addReorderL.istener(table.getTableReorder());
TreeTableModelAdapter newAdapter = new TreeTableModelAdapter(stm,
table.getTree());

table.setModel(newAdapter);

DirectoryTreeTable already includes the above customizations for you.

5.3.10 RemoteTreeTableModel

You can use RemoteTreeTableModel in order to asynchronously retrieve the data from an
underlying cacheable treetable model. This is described in RemoteTreeTableModel.

54 Renderers

TreeTable uses separate renderers to paint the aggregate nodes of the tree. The aggregate
renderer for a cell is taken with either specifying the row and column index for the cell, or the
class of the cell's value:

public TableCellRenderer getAggregateCellRenderer(int row, int column);
public TableCellRenderer getDefaultAggregateRenderer(Class columnClass);

You can also assign an aggregate renderer, according to the class of the cell's value with:

© 2005 Scientific Applications

Treetable (new impl.) 35

public void setDefaultAggregateRenderer(Class columnClass, TableCellRenderer
renderer);

By default, TreeTable will install DefaultTreeTableRenderer instances for all the basic
classes (String, Object, Date, Boolean and Number).

5.5 Cell Spanning

TreeTable extends AdvancedJTable and is therefore capable of cell spanning. TreeTable
overrides AdvancedJTable's method:

protected SpanDrawer createSpanDrawer();

, in order to set an inner DefaultSpanModel subclass, TreeTable.DefaultTreeSpanModel,
which spans the header rows of the treetable. Here is how DefaultTreeSpanModel is
implemented:

public class DefaultTreeSpanModel extends DefaultSpanModel {
private CellSpan cs;
/**
* Constructs a DefaultTreeSpanModel.
*/
public DefaultTreeSpanModel() {
cs = new CellSpan(0, 0, 0, CellSpan.ALL_COLUMNYS);

public CellSpan getCellSpanAt(int row, int column) {
TreeTableModel model = (TreeTableModel) getModel();
if (model.isHeader(row)) {
cs.setSpannedRow(row);
return cs;

}

return super.getCellSpanAt(row, column);

5.6 GroupingPanel

GroupingPanel is a panel through which users can dynamically control the structure of a
TreeTable. The TreeTableModel must be a DynamicTreeTableModel. GroupingPanel uses a
box layout in order to layout a number of comboboxes, whose items are populated with the
columns of a table. By selecting a column in the combo box, the appropriate
DefaultTreeTableComparator is created and added to the associated TreeTableModel. You
can construct a GroupingPanel using the constructors:

© 2005 Scientific Applications

36

Table Library Developer's Manual

6.1

public GroupingPanel(DynamicTreeTableModel model);

public GroupingPanel(DynamicTreeTableModel model, int axis);
public GroupingPanel(DynamicTreeTableModel model, int axis, String
noGroupString);

You can also set and retrieve the maximum allowed number of groups with:
public void setMaximumGroups(int max_groups);

public int getMaximumGroups();

Sorting Data

You can add sorting capabilities to a table by using SortTableModel. SortTableModel is a
ListTableMap that transforms the underlying 'unsorted data' into a sorted data set. The
sorting is performed by comparing the data with the help of Comparators. The user can sort
the data by clicking on a column of the table's header. SortTableModel also installs a special
renderer on the table's header so that to display the sorting order and to paint the mouse clicks
on the header accordingly.

Creating

SortTableModel provides the sorting by manipulating the data given to it by an underlying
ListTableModel instance. See ListTableModel for more information.

There are two constructors:

SortTableModel(ListTableModel tableModel);
SortTableModel(ListTableModel tableModel, JTableHeader tableHeader);

The underlying ListTableModel can be passed as an argument in the constructor or can be
specified later via SortTableModel's superclass (ListTableMap) method:

public void setModel(ListTableModel newModel);

You also need to specify the table's header for sorting to occur when the header is clicked.
This can be passed as an argument in the second constructor, or can be given later with:

public void setHeader(JTableHeader newTableHeader);

Example: Create a SortTableModel

1)

© 2005 Scientific Applications

Sorting Data 37

ListTableModel unsortedModel = new DefaultListTableModel();
SortTableModel sortedModel = new SortTableModel(unsortedModel);
JTable table = new JTable();

table.setModel(sortedModel);
sortedModel.setHeader(table.getTableHeader());

(2)

JTable table = new AdvancedJTable();

ListTableModel unsortedModel = new DefaultListTableModel();
SortTableModel sortedModel = new SortTableModel(unsortedModel,
table.getTableHeader());

table.setModel(stm);

3)

ListTableModel unsortedModel = new DefaultListTableModel();
SortTableModel sortedModel = new SortTableModel(unsortedModel);
JTable table = new JTable(sortedModel);
sortedModel.setHeader(table.getTableHeader());

6.2 Comparators

SortTableModel sorts the data by comparing the cell values with each other. The comparison
is performed with special objects, called Comparators, which implement the
java.util.Comparator interface.

Comparators compare two objects passed as an argument in the method:
public int compare(Object 01, Object 02);

, and return a negative integer, zero, or a positive integer as the first argument is less than,
equal to, or greater than the second.

We have implemented several comparators for all the common objects. These can be found in
the com.sciapp.comparators package:

BooleanComparator: for Boolean values.

DateComparator: for Dates.

StringComparator: for Strings.

CaselnsensitiveStringComparator: for Strings, ignoring case differences.
GeneralComparator: for all other objects that implement the java.lang.Comparable
interface.

When sorting is requested for a column, SortTableModel will try to retrieve a Comparator for
that column by calling the method:

© 2005 Scientific Applications

38

Table Library Developer's Manual

6.3

public Comparator getComparator(int column);

If this method returns null, SortTableModel will then invoke the method:
public Comparator getDefaultComparator(Class columnClass);

, by first retrieving the class of the column.

If this method returns null as well, then a NullPointerException will be thrown. To avoid this,
you need to install comparators with:

public void setComparator(int column, Comparator comparator);
public void setDefaultComparator(Class columnClass, Comparator comparator);

By default, SortTableModel installs comparators for the most common classes. This is done
in the method:

protected void createDefaultComparators();

Note: Comparators are also used by TreeTableModel in order to group the tabular data.
Getting to the data

After sorting, the rows of the table have been reordered. In order to retrieve this
transformation, you can call the method:

public int[] getSortedIndexes();

, Which returns an int array showing the relation between the original and the sorted data.
Also, since SortTableModel extends ListTableMap, the method:

public java.util.List getRows();

will return the transformed sorted list of object rows.

Furthermore, the methods:

public Object getValueAt(int row, int column);

public boolean isCellEditable(int row, int column);

public void setValueAt(Object aValue, int row, int column);

public void removeRow(int row);
public void removeRows(int[] deletedRows);

© 2005 Scientific Applications

Sorting Data 39

all operate on the sorted data.
The original 'unsorted’ data can be retrieved by using ListTableModel's method:

public ListTableModel getModel();
6.4 Single and multi column sorting

SortTableModel is capable of using more than one columns to sort the data of a table. You
can choose between single and multi-column sorting with the method:

public void setSortMode(int mode);

The int variable SortTableModel. SINGLE_SORT is for single-column, while
SortTableModel. MULTI_SORT for multi-column sorting.

You can sort the rows of a table by clicking on a column header. The first time you click on a
previously unsorted column, rows are sorted in ascending order. If you click again the data
are sorted in descending order. A third click will result in the rows being sorted in ascending
order again. In order to remove a sorting from a column, you should have the ALT key
pressed while clicking. In MULTI_SORT mode, you can add sorting columns by having the
CTRL key pressed while clicking on a column.

You can also use the method:

public void sort(int column, int mode);

to perform sorting programmatically. The first argument is the column to sort, while the
second, the sorting mode, which can be:

ADD_SORT: clears sorting columns before adding a column to sort,

REMOVE_SORT: removes a column from sorting and
INSERT_SORT: adds a sorting column.

6.5 Define which columns can be sorted

You can define which column are sortable by calling the method:
public void setSortableColumn(int column, boolean sortable);
All columns are sortable by default.

The non-sortable columns can be retrieved with:

© 2005 Scientific Applications

40

Table Library Developer's Manual

6.6

7.1

public int[] getNonSortableColumns();
,which returns the non-sortable columns as an int array.
You can also determine if a column can be sorted by calling:

public boolean isSortable(int column);
Controlling the visual behaviour of SortTableModel

SortTableModel installs a renderer on the table's header, so that to draw the mouse clicks, the
sorting order and the sorting index. The renderer is an instance of the abstract class
SortTableRenderer. By default, a SortTableButtonRenderer is employed, which uses a
clickable JButton. SortTableButtonRenderer also shows the sorting order with an arrow
pointing up or down accordingly, and the column sorting index as a number next to the
column name.

You can use your own SortTableRenderer by overriding SortTableModel's method:

protected SortTableRenderer createDefaultSortTableRenderer();

Filtering Data

A FilterTableModel is used in order to provide filtering capabilities to a table.
FilterTableModel is a ListTableMap that transforms the underlying 'unfiltered data' into a
filtered data set. The filtering is performed according to a set of rules, implemented by Filter
objects. In addition, a helper class, TableFilter, is used by FilterTableModel to carry out the
whole filtering process. Finally, a FilterModel is used to fire FilterModelEvents, which are
constructed via GUI classes, such as FilterTablePanel or FilterHeaderModel.

Creating

FilterTableModel filters the data presented to it by an underlying ListTableModel instance.
See ListTableModel for more information.

You can construct a FilterTableModel with the constructor:
FilterTableModel(ListTableModel tableModel);

The underlying ListTableModel can be passed as an argument in the constructor or can be
specified later via FilterTableModel's superclass (ListTableMap) method:

© 2005 Scientific Applications

Filtering Data 41

public void setModel(ListTableModel newMaodel);

Example: Create a FilterTableModel

(1)

ListTableModel unfilteredModel = new DefaultListTableModel();
FilterTableModel filteredModel = new FilterTableModel(unfilteredModel);
JTable table = new JTable();

table.setModel(filteredModel);

)

ListTableModel unfilteredModel = new DefaultListTableModel();
FilterTableModel filteredModel = new FilterTableModel(unfilteredModel);
JTable table = new JTable(filteredModel);

7.2 Filters

The filtering is performed by special objects, called Filters.

A filter decides whether to let an object pass through its filtering rules with the method:
public boolean accept(Object 0);

, which will return true if the object matched and should not be filtered out, false otherwise.
The abstract Filter class also includes two generic methods:

public void setFilterPattern(Object filter);
public Object getFilterPattern();

, that can be used for assigning and retrieving the given filter pattern as an arbitrary java
object.

The behaviour of the filter when dealing with null values is also specified with the methods:

public boolean getAcceptNull();
public void setAcceptNull(boolean acceptNull);

We have implemented filters for all the common objects:

StringFilter: for Strings.
BooleanFilter: for Boolean values.
DateFilter: for Dates.
NumericFilter: for Numbers.

© 2005 Scientific Applications

42

Table Library Developer's Manual

7.3

7.4

You can create your own filter by extends the abstract Filter class.

TableFilters

TableFilters are used by FilterTableModel to filter the data.
One of TableFilter's methods:

public boolean filter(ListTableModel tableModel, Object rowData);
public boolean filter(TableModel tableModel, int row);

, can be used to perform the filtering.

TableFilters internally use filters in order to filter the data. You specify the filter that will be
used in the constructor:

public TableFilter(Filter filter);
public TableFilter(Filter filter, int column);

Furthermore, you can logically subtract, add, or negate TableFilters to create more complex
ones, by using OrTableFilter, AndTableFilter or NotTableFilter respectively.

Getting to the data

After filtering, some (or all) of the original rows may not be available to the table. You can
retrieve this transformation by calling the method:

public int[] getFilteredIndexes();

, which will return an int array showing the relation between the original and the filtered data.
Also, since FilterTableModel extends ListTableMap, the method:

public java.util.List getRows();

will return the transformed filtered list of object rows.

Furthermore, the methods:

public Object getValueAt(int row, int column);

public boolean isCellEditable(int row, int column);

public void setValueAt(Object aValue, int row, int column);

public void removeRow(int row);
public void removeRows(int[] deletedRows);

© 2005 Scientific Applications

Filtering Data 43

all operate on the filtered data.
The original 'unfiltered’ data can be retrieved by using ListTableModel's method:

public ListTableModel getModel();
7.5 Presenting filter options to the user

We have implemented two classes for presenting filter options to users: FilterTablePanel
and FilterHeaderModel. FilterTablePanel presents filter options in a JPanel whereas
FilterHeaderModel provides a filter component on each column. Both these classes are
responsible for constructing a FilterModelEvent, which is propagated to a FilterModel's list
of FilterModelListeners. FilterTableModel, being a FilterModelListener, receives this event
and filters the data accordingly.

7.5.1 VisualFilters

A VisualFilter is the visual representation of a Filter. VisualFilter uses a JPanel that contains
the controls to manipulate the filter object. An instance of the panel is retrieved with:

public javax.swing.JPanel getPanel();

VisualFilter also defines methods for binding the visual controls on the panel with a
TableFilter object, which is used in constructing the FilterModelEvent which is propagated to
the FilterModelListeners:

public TableFilter getTableFilter();
public void setTableFilter(TableFilter tf);

We have implemented several visual filters for all the common objects:

DateVisualFilter: for Dates
StringVisualFilter: for Strings
BooleanVisualFilter: for Booleans
NumericVisualFilter: for Numbers

7.5.2 FilterTablePanel

FilterTablePanel is a panel through which FilterModelEvents are created and propagated to
FilterModelListeners. FilterTablePanel contains a collection of VisualFilters, one of each is
shown at a time. The appropriate VisualFilter to use for a column is taken by calling the
methods:

© 2005 Scientific Applications

44

Table Library Developer's Manual

7.5.3

public VisualFilter getDefaultFilter(Class columnClass);
public VisualFilter getDefaultFilter(int field);

By default, FilterTablePanel installs visual filters for objects, strings, numbers and boolean
values. This is done upon initialization with the method:

protected void createDefaultFilters();
You can construct a FilterTablePanel by using one of the constructors:

FilterTablePanel(String [] fields);
FilterTablePanel(String[] fields, Class[] classes);
FilterTablePanel(TableModel);

FilterTablePanel also includes a FilterModel object which is responsible for sending the
events to the FilterModelListeners. FilterTableModel needs to be added to that list, so that it
can receive the FilterModelEvents.

Example: Create a FilterTablePanel and use it to filter the data of a table.
[[filteredModel is the FilterTableModel

/[create the panel
FilterTablePanel filterPanel = new FilterTablePanel(filteredModel);

/ladd filteredModel to the list of FilterModeL.isteners
FilterModel filterModel = filterPanel.getFilterModel();
filterModel.addFilterModelListener(filteredModel);

FilterHeaderModel

The abstract class FilterHeaderModel is used to provide real-time row filtering via a
component that is installed on the table's header. Its subclasses need to implement methods to
add this component on the column:

protected void removeRenderer(TableColumn aColumn);
protected void setRenderer(TableColumn aColumn);

PopupFilterHeaderModel, a FilterHeaderModel subclass, installs an arrow button on the
column, which, when clicked, invokes a popup menu that contains available filter expression
values regarding the column. Moreover, CustomPopupFilterHeaderModel adds a more
complex custom filter.

You can use FilterHeaderModel in any JTable with either of the methods:

© 2005 Scientific Applications

Filtering Data 45

public void attachToTable(JTable table);
public void attachToTable(JTable table, FilterListModel flm);

FilterHeaderModel contains a specialized JTableHeader subclass, FilterTableHeader, which
replaces the table's header upon calling the attachToTable method above. You can create,
retrieve and assign the header with:

protected FilterTableHeader createTableHeader();
public FilterTableHeader getTableHeader();
public void setTableHeader(FilterTableHeader header);

Note: AdvancedJTable already provides a FilterTableHeader subclass, which must be
assigned to FilterHeaderModel prior to calling the attachToTable method. (see example 2
below)

Example 1: Install a FilterHeaderModel on a JTable

[[first create the FilterTableModel and JTable

ListTableModel unfilteredModel = new DefaultListTableModel();
FilterTableModel filteredModel = new FilterTableModel(unfilteredModel);
JTable table = new JTable(filteredModel);

/[create the FilterHeaderModel
FilterHeaderModel fhm = new CustomPopupFilterHeaderModel();

/lattach FilterHeaderModel to the table
fhm.attachToTable(table);

Example 2: Install a FilterHeaderModel on an AdvancedJTable

/[first create the FilterTableModel and AdvancedJTable

ListTableModel unfilteredModel = new DefaultListTableModel();
FilterTableModel filteredModel = new FilterTableModel(unfilteredModel);
JTable table = new AdvancedJTable(filteredModel);

/[create the FilterHeaderModel
FilterHeaderModel fhm = new CustomPopupFilterHeaderModel();

/lassign AdvancedJTable's header to the FilterHeaderModel
fhm.setTableHeader((FilterTableHeader) table.getTableHeader());

/lattach FilterHeaderModel to the table
fhm.attachToTable(table);

© 2005 Scientific Applications

46

Table Library Developer's Manual

8.1

8.2

Caching

A TableModel or TreeTableModel can be made cacheable by implementing the
CacheableTableModel or CacheableTreeTableModel interface respectively. A Cache
object can be used in conjuction with these classes, as a place to store the cached values.

CacheableTableModel

CacheableTableModel contains methods for determining whether the row count or certain
cell values have been retrieved (cached). These are:

public boolean isCountCached();
public boolean isVValueCached(int row, int column);

In addition, the method:

public boolean isRangedModel();

, determines whether or not the model can fetch data in ranges.
Finally, the method:

public java.util.List getUncachedRows(int from, int to);

, retrieves the cell values from the table model by specifying a row interval. In our
framework, this method is used by a Cache (TableCache) object.

CacheableTreeTableModel

CacheableTreeTableModel contains methods for determining whether the children count or
the column values of a tree node have been retrieved (cached). These are:

public boolean isCountCached(Object node);
public boolean isValueCached(Object node, int column);

In addition, the method:
public boolean isRangedModel();
, determines whether or not the model can fetch data in ranges.

Finally, the methods:

© 2005 Scientific Applications

Caching 47

public java.util.List getUncachedGroups(Object parent, int from, int to);
public java.util.List getUncachedChildren(Object parent, int from, int to);
public int getUncachedGroupCount(Object node);

, retrieve the cell values and children count from the treetable model by specifying a row
interval. In our framework, these methods are used by a Cache (TreeTableCache) object.

8.3 Cache

Cache represents a cache store. You can use default implementations for tables and treetables
by creating a DefaultTableCache and DefaultTreeTableCache respectively.
The cache implementations have some common behaviour: you can define how the data is

retrieved from the uncached model, by specifying the maximum cache size and the number
of values to retrieve when fetching (chunk size).

8.4 CachedListTableModel

CachedListTableModel provides a caching behaviour for a ListTableModel. This class uses a
DefaultTableCache in order to store the table's rows.

CachedListTableModel wraps around a ListTableModel, passed in the constructor:

ListTableModel uncachedModel = new DefaultListTableModel();
CachedL.istTableModel cacheModel = new CachedListTableModel(uncachedModel);

You can also specify the TableCache and/or the chunk size and the maximum cache size at
construction time.

public CachedListTableModel(ListTableModel model, DefaultTableCache cache);

public CachedListTableModel(ListTableModel model, int chunkSize, int
maximumCacheSize);

8.5 CachedTableModel

CachedTableModel provides a caching behaviour for a TableModel. This class uses a
DefaultTableCache in order to store the table's rows.

CachedTableModel wraps around a TableModel, passed in the constructor:

ListTableModel uncachedModel = new DefaultListTableModel();

© 2005 Scientific Applications

48

Table Library Developer's Manual

9.1

CachedTableModel cacheModel = new CachedTableModel(uncachedModel);

You can also specify the TableCache and/or the chunk size and the maximum cache size at
construction time.

public CachedTableModel(ListTableModel model, DefaultTableCache cache);

public CachedTableModel(ListTableModel model, int chunkSize, int
maximumCacheSize);

GroupTableHeader

GroupTableHeader provides for a TableHeader that is able to group table columns together.
GroupTableColumn

GroupTableColumn is a TableColumn subclass that contains children TableColumns. In
addition, it holds a reference to its parent GroupTableColumn. The group table columns have
a tree-like structure, with a GroupTableColumn as the root column. This tree is effectively
created and managed by GroupTableHeader.

You can create a GroupTableColumn by supplying the header value to display, the default
width and the renderer, editor that is installed.

e.g.
GroupTableColumn gtc = new GroupTableColumn(*'Personal Details™);
You can add/remove table columns or group table columns as children with:
public void addColumn(TableColumn aColumn);

public void removeColumn(int columnindex);

public void removeColumn(TableColumn aColumn);

Columns can be added to the group table column after they have been created by the table or
the table column model.

Additionally, you can control the children columns visibilty with:

public boolean getShowChildren();
public void setShowChildren(boolean showChildren);

Example: Create a GroupTableColumn

© 2005 Scientific Applications

GroupTableHeader 49

GroupTableColumn gtc = new GroupTableColumn(**Name™);
gtc.addColumn(table.getColumnModel().getColumn(0)); //refers to the normal column
atindex 0

gtc.addColumn(table.getColumnModel().getColumn(2)); //refers to the normal column
atindex 1

9.2 GroupTableColumnModel

GroupTableColumnModel defines the requirements for a table column model object
suitable for use with a GroupTableHeader. This interface defines methods for
adding/removing GroupTableColumnModelListeners that are notified each time a group
column is added or removed from the model.

The root group column is retrieved with:

public GroupTableColumn getRootGroupColumn();

You can use this root group column to add group columns to the model:
GroupTableColumn root = model.getRootGroupColumn();

GroupTableColumn gtc = new GroupTableColumn(**Name');
gtc.addColumn(table.getColumnModel().getColumn(0));
gtc.addColumn(table.getColumnModel().getColumn(1));

root.addColumn(gtc);
9.3 GroupTableColumnModelListener

GroupTableColumnModelListener defines the interface for an object that listens to
changes in a GroupTableColumnModel.

DefaultGroupTableColumnModel will create and send GroupTableColumnModelEvents
to its listeners upon the removal or addition of group table columns.

9.4 Usage

You create and install a GroupTableHeader as you normally would with a JTableHeader:

GroupTableHeader gth = new GroupTableHeader();
JTable table = new JTable();
table.setTableHeader(gth);

© 2005 Scientific Applications

Table Library Developer's Manual

Then you can use GroupTableHeader's methods:

public void addGroupColumn(GroupTableColumn aColumn);
public void removeGroupColumn(GroupTableColumn aColumn);

, in order to add/remove column groups.

AdvancedJTable creates its own GroupTableHeader subclass,
AdvancedJTable.InnerTableHeader. Therefore, you need not and should not set a
GroupTableHeader if you are using AdvancedJTable.

Example 1: Usage of GroupTableHeader with a JTable

GroupTableHeader groupHeader = new GroupTableHeader();
GroupTableColumn nameColumn = new GroupTableColumn(**Name™);
nameColumn.addColumn(table.getColumnModel().getColumn(0));
nameColumn.addColumn(table.getColumnModel().getColumn(1));
groupHeader.addGroupColumn(nameColumn);
table.setTableHeader(groupHeader);

Example 2: Usage of GroupTableHeader with AdvancedJTable
GroupTableHeader groupHeader = (GroupTableHeader) table.getTableHeader();
GroupTableColumn nameColumn = new GroupTableColumn(**Name™);
nameColumn.addColumn(table.getColumnModel().getColumn(0));
nameColumn.addColumn(table.getColumnModel().getColumn(1));

groupHeader.addGroupColumn(nameColumn);

Asynchronous Transfers (RemoteModels)

By using classes from the com.sciapp.table.remote package, the table retrieves data from its
table model asynchronously. In this way, the paint thread is not blocked, and the user
interface is not 'frozen’. This is extremely useful for situations where data is read from a
database or from the network.

© 2005 Scientific Applications

Asynchronous Transfers (RemoteModels) 51

10.1

10.2

10.3

RemoteTableModel

RemoteTableModel is used to asynchronously retrieve the data from an underlying
cacheable table model. Its default implementation, DefaultRemoteTableModel wraps
around a CacheableTableModel and uses an internal thread in order to asynchronously
retrieve the data from the underlying (uncached) model.

Example: Use a DefaultRemoteTableModel in order to asynchronously retrieve the data of an
uncached DefaultTableModel:

DefaultTableModel dtm = new DefaultTableModel();
CachedTableModel ctm = new CachedTableModel(dtm);
DefaultRemoteTableModel rtm = new DefaultRemoteTableModel(ctm);

JTable table = new JTable();
table.setModel(rtm);

RemoteTreeTableModel

RemoteTreeTableModel is used to asynchronously retrieve the data from an underlying
cacheable treetable model. Its default implementation, DefaultRemoteTreeTableModel
wraps around a CacheableTreeTableModel and uses an internal thread in order to
asynchronously retrieve the data from the underlying model.

Example: Use a DefaultRemoteTreeTableModel in order to asynchronously retrieve the data
of a DirectoryTreeTableModel:

DirectoryTreeTableModel dtm = new DirectoryTreeTableModel();
DefaultRemoteTreeTableModel rtm = new DefaultRemoteTreeTableModel(dtm);

TreeTable table = new TreeTable();

TreeTableModelAdapter newAdapter = new TreeTableModelAdapter(rtm,
table.getTree());

table.setModel(newAdapter);

RemoteTableListener

RemoteTableListener is a listener that is notified each time the RemoteTableModel will
start or stop querying the underlying table model.

Remote(Tree)TableModel will create and send RemoteTableEvents to its listeners upon
the begining or end of an asynchronous query to the underlying model.

© 2005 Scientific Applications

52

Table Library Developer's Manual

10.4

10.5

10.6

11

111

StatusPanel

StatusPanel is a JPanel that shows the current status of a RemoteTableModel or
RemoteTreeTableModel. StatusPanel contains a label and an indicator that update themselves
according to the RemoteTableEvent received.

Pending Value

PendingValue is an interface that classes implementing it are considered to represent objects
that have not yet been evaluated by RemoteTableModel or RemoteTreeTableModel.
DefaultRemoteTableModel and DefaultRemoteTreeTableModel use a DefaultPendingValue
that its toString() method returns a certain string.

Style

You can add RemoteStyle to AdvancedJTable's style model so that the pending cells will be
painted with a specified background color. This style is applied only if the given cell value
implements the PendingValue interface.

You can assign and retrieve the pending background color with:
public void setPendingBackgroundColor(java.awt.Color

newPendingBackgroundColor);
public java.awt.Color getPendingBackgroundColor();

Locked Rows/Columns

You can make the rows and columns at the edges of a table locked in place (non-scrollable).
For this behaviour, the table must be enclosed by an AdvancedJScrollPane. You can then
manipulate AdvancedJScrollPane's locked table model attribute in order to assign the number
of locked rows/columns:

AdvancedJScrollPane scroller = new AdvancedJScrollPane();
LockedTableModel lockedModel = scroller.getLockedModel();
lockedModel.setLockedColumns(2, LockedTableModel.LEFT_DIRECTION);

LockedTableModel

LockedTableModel is the model that holds the number of locked rows/columns at the 4

© 2005 Scientific Applications

Locked Rows/Columns 53

edges of the table.
You can set the locked rows/column with:

public void setLockedColumns(int columns, int direction);
public void setLockedRows(int rows, int direction);

Also, retrieve the number of locked rows/columns:

public int getLockedColumns(int direction);
public int getLockedRows(int direction);

There are four defined directions:

LEFT_DIRECTION, RIGHT_DIRECTION, TOP_DIRECTION and
BOTTOM_DIRECTION.

11.2 LockedTableModelListener

LockedTableModelListener is the listener that is notified upon changes to a
LockedTableModel.

DefaultLockedTableModel will create and send LockedTableModelEvents to its listeners
upon the assignment of locked rows/columns.

11.3 Usage

You can assign the number of locked rows/columns by manipulating AdvancedJScrollPane's
locked model as follows:

AdvancedJScrollPane scroller = new AdvancedJScrollPane();
LockedTableModel lockedModel = scroller.getLockedModel();
lockedModel.setLockedColumns(2, LockedTableModel. RIGHT _DIRECTION);
lockedModel.setLockedRows(1, LockedTableModel. TOP_DIRECTION);

JTable table = new JTable();
scroller.setViewPortView(table);

AdvancedJScrollPane creates and manages a LockedTableModel instance. The following
AdvancedJScrollPane's methods are used for creating, getting and setting the locked table
model:

protected LockedTableModel createDefaultLockedModel();
public LockedTableModel getLockedModel();

© 2005 Scientific Applications

54 Table Library Developer's Manual

public void setLockedModel(LockedTableModel lockedModel);
NOTE: Since 3.3.5.2, AdvancedJTable no longer uses a LockedTableModel instance. The
methods that concern LockedTableModel have been moved to AdvancedJScrollPane.

12 Cell Spanning

You can span the cells of a JTable by using the classes in the com.sciapp.table.span
package. More specifically, SpanDrawer is used to draw the spanned cells according to the
data fed to it by a SpanModel.

12.1 SpanDrawer

SpanDrawer is responsible for drawing the spanned cells of a JTable, by querying a
SpanModel in order to find out which cells to span.

SpanDrawer has three constructors:

SpanDrawer();

SpanDrawer(JTable table);

SpanDrawer(JTable table, SpanModel spanModel);

You can use the third constructor to specify the associated table and the span model to use.
Nevertheless, you can assign these variables later by calling:

public void setTable(JTable newTable);
public void setSpanModel(SpanModel newSpanMaodel);

If you do not specify a span model in the constructor, a DefaultSpanModel is created,
through which spanned cells can be dynamically added/removed.

You can get an instance of the span model with:
public SpanModel getSpanModel();

Cell spanning is not enabled by default when you first create a SpanDrawer instance. In order
to enable cell spanning, use:

public void setUseSpan(boolean useSpan);
You can also determine if cell spanning is enabled with:

public boolean getUseSpan();

© 2005 Scientific Applications

Cell Spanning 55

AdvancedJTable creates an internal SpanDrawer object upon initialization, which is used to
draw the spanned cells. In AdvancedJTable, there are methods for creating, setting and
getting the span drawer to use:

protected SpanDrawer createSpanDrawer();
public void setSpanDrawer(SpanDrawer drawer);
public SpanDrawer getSpanDrawer();

Example: Manipulate AdvancedJTable's SpanDrawer object.

AdvancedJTable table = new AdvancedJTable();
/linitialize the table with some data here.

SpanDrawer drawer = table.getSpanDrawer();

DefaultSpanModel dsm = (DefaultSpanModel) drawer.getSpanModel();
CellSpan cellSpan = new CellSpan(0, 0, 0, CellSpan.ALL_COLUMNS);
dsm.addCellSpan(cellSpan);

You can also use SpanDrawer in your own JTable subclass by using appropriate code. To
find out more see the Appendix.

12.2 SpanModel

SpanDrawer queries a SpanModel in order to discover which cells of the table are spanned so
that it can draw them appropriately. SpanModel's method:

public CellSpan getCellSpanAt(int row, int column);

is used to return a CellSpan object that specifies which cells are spanned.

CellSpan's structure is simple. A CellSpan object has four attributes:

spannedRow, spannedColumn: in a series of cell spans, these two integers define the
top-left cell where the span begins.

rowSpan, columnSpan: these two integers define the number of rows and columns that the

cell spans respectively.

Note: In a series of spanned cells, the getCellSpanAt method should return the same CellSpan
object for all the affected cells.

If no SpanModel is specified in SpanDrawer's constructor, a DefaultSpanModel is created.
DefaultSpanModel has the ability to dynamically add/remove spanned cells through the
methods:

© 2005 Scientific Applications

56

Table Library Developer's Manual

12.3

public void addCellSpan(CellSpan cellSpan);
public void removeAllCellSpans();

public void removeCellSpan(CellSpan cellSpan);
public void removeCellSpan(int row, int column);

You can create your own SpanModel by either implementing the SpanModel interface, or by
extending the AbstractSpanModel class.

Example: Create a SpanModel that spans cells every three rows:

SpanModel spanModel = new AbstractSpanModel() {
public CellSpan getCellSpanAt(int row, int column) {
if (row % 3 ==0) {
return new CellSpan(row, column, 0, 4);
}

}
I3
SpanDrawer drawer = table.getSpanDrawer();
drawer.setSpanModel(spanModel);

SpanModelEvent and SpanModelListener

DefaultSpanModel fires a SpanModelEvent every time a cell span is added or removed. You
can listen for SpanModelEvents by creating a class that implements SpanModelListener and
adding it to the SpanModel's SpanModelL isteners list. For example, SpanDrawer contains an
internal SpanModelListener that repaints the table's area that was affected by a cell span
being added/removed.

Example: Create a SpanModelListener.

SpanModelListenerer mySpanModelListener = new SpanModelL.istener() {
public void spanChanged(SpanModelEvent) {
int type = e.getType();
CellSpan cs = e.getCellSpan();
if (type = e.INSERT) {

}
if (type =e. DELETE) {

}
if (type = e. UPDATE) {

}

© 2005 Scientific Applications

Cell Spanning 57

5

SpanDrawer drawer = table.getSpanDrawer();

SpanModel spanModel = drawer.getSpanModel();
spanModel.addSpanModelListener(mySpanModelL.istener);

13 Styles

Styles can beautify your table by modifying a table's renderer component, just before the
component is shown on the table. While the renderer of the cell, a TableCellRenderer
object, transforms a value to a visual component, a style performs additional actions to the
component, such as changing its background color or its text font.

13.1 Creating

You can create your own Style by implementing the Style interface and implementing the
method:

public void apply(java.awt.Component c, javax.swing.JTable table, int row, int
column);

Example: Create a style that paints alternate cells with a red background color.
Style myStyle = new Style() {

public void apply(java.awt.Component c, javax.swing.JTable table, int row, int
column) {

if (row % 1==0&& column % 1==0) {
c.setBackGround(Color.red);
}

I
13.2 DefaultStyle

DefaultStyle is a style that paints alternate rows of a table with different colors.
You can assign the even/odd color with:

public void setEvenColor(Color evenColor);
public void setOddColor(Color oddColor);

You can also retrieve the assigned even/odd color with:

© 2005 Scientific Applications

58

Table Library Developer's Manual

13.3

public Color getEvenColor();
public Color getOddColor();

AdvancedJTable creates a DefaultStyle upon initialization. You can specify the odd and even
row colors by using AdvancedJTable's methods:

public void setEvenColor(Color evenColor);
public void setOddColor(Color oddColor);

StyleModel

A collection of Styles is kept in a StyleModel.
StyleModel iterates through its collection of styles to apply them to the Component being
drawn using the method:

public void applyStyles(java.awt.Component c, javax.swing.JTable table, int row, int
column);

StyleModel also includes methods for managing its internal styles list:

public void addStyle(Style newStyle);

public void clearStyles();

public Style getStyle(int index);

public Style[] getStyles();

public void insertStyle(Style newStyle, int index);
public void removeStyle(Style style);

DefaultStyleModel is the default style model implementation. An instance of it is created and
used by AdavancedJTable.
AdavancedJTable defines methods for creating, getting and setting the StyleModel:

protected StyleModel createDefaultStyleModel();

public StyleModel getStyleModel();

public void setStyleModel(StyleModel styleModel);

If you want to use a StyleModel in your custom JTable, you should override the method:
public Component prepareRenderer(TableCellRenderer renderer, int row, int column);
to look like:

public Component prepareRenderer(TableCellRenderer renderer, int row, int column)

{

Component ¢ = super.prepareRenderer(renderer, row, column);
styleModel.applyStyles(c, this, row, column);

© 2005 Scientific Applications

Styles 59

return c;

14 JTableRowHeader

JTableRowHeader represents a vertical table header, that can be used as the row header of a
JTable. This class extends JTableHeader, therefore it inherits all of JTableHeader's methods
and properties. JTableRowHeader uses a TableColumnModel to manage its cells. Each cell in
the header has the same column width, whereas the cell's row height is determined by the row
height of the cell in the associative table.

14.1 Creating

JTableRowHeader has two constructors:

JTableRowHeader(TableColumnModel columnModel);
JTableRowHeader(TableColumnModel columnModel, int columnWidth);

You can use a DefaultTableColumnModel as the column model. If you do not use the
second constructor to specify the column width, a default width of 25 pixels is used.

An instance of this class is created and employed by AdvancedJTable. The following
AdvancedJTable's methods are used for creating, getting and setting the row header:

protected JTableRowHeader createDefaultTableRowHeader();
public JTableRowHeader getTableRowHeader();
public void setTableRowHeader(JTableRowHeader rowHeader);

You can use JTableRowHeader in any JTable by setting it as the row header view of the
enclosing JScrollPane:

DefaultTableColumnModel columnModel = new DefaultTableColumnModel();
JTableRowHeader rowHeader = new JTableRowHeader(columnModel);

JTable table = new JTable();
rowHeader.setTable(table);

JScrollPane scroller = new JScrollPane();
scroller.setViewportView(table);
scroller.setRowHeaderView(rowHeader);

© 2005 Scientific Applications

60

Table Library Developer's Manual

14.2

14.3

14.4

Controlling the visual appearance

Just as in JTableHeader, the cells are rendered by a TableCellRenderer object. The
following JTableRowHeader's methods are used for creating, getting and setting the cell
renderer:

protected TableCellRenderer createDefaultRowRenderer();

public TableCellRenderer getDefaultRowRenderer();

public void setDefaultRowRenderer(TableCellRenderer defaultRenderer);

By default, JTableRowHeader uses a DefaultRowHeaderRenderer to render its cells. The
cells in a DefaultRowHeaderRenderer are rendered as a JButton, which text is set to the string
value of the cell.

The value of each cell is determined by the method:

protected Object getColumnHeaderValue(int rowlndex);

By default, this method returns the current row number as a string.
Setting the column width

You can use the constructor:

JTableRowHeader(TableColumnModel columnModel, int columnWidth);
, in order to specify the column width.

Alternatively, you can use the method:

public void setColumnWidth(int columnWidth);

Finally, you can retrieve the current column width with:

public int getColumnWidth();
Controlling the row header’s visibility

AdvancedJTable defines two methods for retrieving and assigning the header row's visibility:

public boolean getShowRowHeader();
public void setShowRowHeader(boolean show);

© 2005 Scientific Applications

JTableRowHeader 61

You can show or hide the row header in your own JTable class by manipulating the enclosing
JScrollPane:

JScrollPane scroller = new JScrollPane();

//show the row header
scroller.setRowHeaderView(rowHeader);

/Ihide the row header
scroller.setRowHeaderView(null);

15 TreeTableHeader

TreeTableHeader is a specialized JTableHeader capable of keeping a hierarchical (tree)
structure of table columns. The columns that have children contain an expand/collapse icon
on the left, which can be used to expand/collapse the column respectively. The column tree
structure is defined in a TreeTableColumnModel, which defines methods for retrieving,
adding and removing table columns. Finally, TreeTableHeader's column model is a
TreeTableColumnModelAdapter that provides an interface from the visible columns in the
header to the actual column data.

15.1 TreeTableColumnModel

TreeTableColumnModel defines the structure of a hierarchical column model.
TreeTableColumnModel extends javax.swing.tree. TreeModel and defines three extra
methods for retrieving, adding and removing table columns. These are:

public TableColumn getColumn(Object node): Returns the table column at the specified
node.

public Object insertColumninto(TableColumn aColumn, Object columnNode, Object
parentNode, int index): Inserts a table column at the node specified by columnNode, whose
parent is parentNode and index is the child location in the parent node. The columnNode
parameter is optional, by setting this to null, TreeTableColumnModel should create a new
node for the supplied column. The object returned is the newly created node, or the
columnNode object passed as a parameter to the method.

public void removeColumnFrom(Object node): Removes the node, and thereby the
column, from the model.

Note that you can install TreeModelListeners to be notified when a column was added,
removed, or changed:

TreeTableColumnModel.add TreeModelListener(new javax.swing.event.
TreeModelListener() {

© 2005 Scientific Applications

62

Table Library Developer's Manual

15.2

public void treeNodesChanged(javax.swing.event. TreeModelEvent e) {

public void treeNodesInserted(javax.swing.event. TreeModelEvent e) {
Object[] children = e.getChildren();
if (children == null) return;
for (inti=0; i <children.length; i++) {
TableColumn tc = treeColumnModel.getColumn(children(i]);
/[column tc was added
}
}

public void treeNodesRemoved(javax.swing.event. TreeModelEvent e) {

public void treeStructureChanged(javax.swing.event. TreeModelEvent e) {

}
D;

DefaultTreeTableColumnModel

DefaultTreeTableColumnModel provides a default implementation for a
TreeTableColumnModel. For not rewriting the code associated to dealing with tree models,
we made it extend ObjectTreeTableModel, although the extra ‘column’ dimension introduced
by TreeTableModel is not used as it is not needed. DefaultTreeTableColumnMaodel uses
TableColumns as the user objects of its (DefaultMutableTreeNode) nodes. Additionally, the
TreeTableColumnModel methods are actually calls to its MutableTreeTableModel
superclass.

Note that, when inserting columns, TableColumn's modellndex attribute must be associated
to the table's data model. For example, if you use the no-argument TableColumn constructor,
all created columns will bear a model index of O, thereby referring to the first column in the
data model.

Example: Use DefaultTreeTableColumnModel to create a three level tree header

/lgroup
DefaultTreeTableColumnModel model = new DefaultTreeTableColumnModel();

[[first level

TableColumn continents = new TableColumn(0);
continents.setHeaderValue(*'Continents™);

Object continentsNode = model.insertColumnlinto(continents, null, model.getRoot(), 0);

/Isecond level - europe

© 2005 Scientific Applications

TreeTableHeader 63

TableColumn europe = new TableColumn(1);
europe.setHeaderValue(*"Europe™);

Object europeNode = model.insertColumninto(europe, null, continentsNode, 0);
//second level - america

TableColumn america = new TableColumn(2);
america.setHeaderValue("*America');

Object americaNode = model.insertColumninto(america, null, continentsNode, 1);
//second level - asia

TableColumn asia = new TableColumn(3);

asia.setHeaderValue(*"Asia™);

Object asiaNode = model.insertColumninto(asia, null, continentsNode, 2);

/Ithird level - europe/germany

TableColumn germany = new TableColumn(4);
germany.setHeaderValue(**Germany™);

Object germanyNode = model.insertColumninto(germany, null, europeNode, 0);
/lthird level - europe/uk

TableColumn uk = new TableColumn(5);

uk.setHeaderValue(*"UK"™);

Object ukNode = model.insertColumninto(uk, null, europeNode, 1);
/Ithird level - europel/italy

TableColumn italy = new TableColumn(6);
italy.setHeaderValue(*'Italy™);

Object italyNode = model.insertColumninto(italy, null, europeNode, 2);

/[third level - america/USA

TableColumn usa = new TableColumn(7);

usa.setHeaderValue(""USA™);

Object usaNode = model.insertColumninto(usa, null, americaNode, 0);
/Ithird level - america/colombia

TableColumn colombia = new TableColumn(8);
colombia.setHeaderValue(**Colombia™);

Object colombiaNode = model.insertColumninto(colombia, null, americaNode, 1);
/Ithird level - america/cuba

TableColumn cuba = new TableColumn(9);
cuba.setHeaderValue(*"Cuba™);

Object cubaNode = model.insertColumninto(cuba, null, americaNode, 2);

Note that the int argument passed to the TableColumn constructor is the column index that
maps to the column in the table's data model (the TableModel).

15.3 TreeTableColumnModelAdapter

TreeTableColumnModelAdapter is the column model used by TreeTableHeader.
TreeTableColumnModel Adapter maintains an instance to the TreeTableColumnModel

© 2005 Scientific Applications

64

Table Library Developer's Manual

containing the column data, while it exposes, with the help of a JTree, the expanded columns
to the table. The collapsed columns remain hidden and are made available to the table upon
tree expansion events.

TreeTableColumnModel Adapter has two constructors:

public TreeTableColumnModelAdapter(): Default, no-argument, a
TreeTableColumnModel is created with protected TreeTableColumnModel
createDefaultTreeColumnModel().

public TreeTableColumnModelAdapter(TreeTableColumnModel treeTableModel):
assigns the TreeTableColumnMaodel at construction time.

The TreeTableColumnModel can be assigned any time using the method:
public void setTreeTableColumnModel(TreeTableColumnModel model)
Note that TreeTableHeader will create a TreeTableColumnModel Adapter upon initialization.

TreeTableColumnModel Adapter also has a JTree which is used to find out which column
nodes are expanded or collapsed. You can retrieve the JTree variable with the method:

public JTree getTree()
The JTree can then be used to expand or collapse rows or tree paths programatically:

JTree tree = TreeTableColumnModelAdapter.getTree();
tree.expandRow(1);

You can also install TreeExpansionListeners to be notified after a column has been
expanded:

tree.addTreeExpansionListener(new TreeExpansionListener() {
public void treeExpanded(TreeExpansionEvent event) {
TreePath path = event.getPath();
Object node = path.getLastPathComponent();
/Isupposing model is the TreeTableColumnModel
TableColumn column = model.getColumn(node); //column has been

expanded
}
public void treeCollapsed(TreeExpansionEvent event) {
}

b;

Also, to find the node at a specific row of the tree, you can use the method:

public Object nodeForRow(int rowlndex)

© 2005 Scientific Applications

TreeTableHeader 65

15.4 Usage

To install a TreeTableHeader on a table, the TreeTableColumnModel that will contain the
hierarchical column structure must first be created. Since, by assigning the tree header to the
table, will make the table assign its 'flat' column model to the header, the TreeTableHeader's
column model must be assigned to the table prior to assigning the header to the table.
Otherwise, a ClassCastException will be thrown.

Example:
DefaultTreeTableColumnModel model = new DefaultTreeTableColumnModel();
/[fill the model with some values as in this example

/[create the TreeTableHeader
TreeTableHeader treeHeader = new TreeTableHeader(model);

/[create the table
AdvancedJTable table = new AdvancedJTable();

/lassign the "tree’ column model of the tree header - THIS IS IMPORTANT
table.setColumnModel(treeHeader.getColumnModel());

/lassign the tree header to the table
table.setTableHeader(treeHeader);

16 CheckBoxTree

CheckBoxTree is a JTree subclass that carries a checkbox at every node in the tree. The
checkbox can be selected/unselected both visually and programmatically. The checkbox's
selections are stored and managed by a CheckBoxTreeSelectionModel whose default
implementation is DefaultCheckBoxTreeSelectionModel.

16.1 CheckBoxTreeSelectionModel

CheckBoxTreeSelectionModel is the checkbox's selection model. It can be used to find out
what tree nodes are selected and to select/deselect one or more nodes.
CheckBoxTreeSelectionModel extends TreeSelectionModel, which defines the selection
model for a JTree. The difference here is that while TreeSelectionModel treats paths as tree
rows being selected, CheckBoxTreeSelectionModel's selections paths refer to the nodes

© 2005 Scientific Applications

66

Table Library Developer's Manual

16.2

whose checkbox is selected.

You can use TreeSelectionModel's methods to manage the checkboxes selection, just as you
do for the tree rows selections.

For example, the method to retrieve all selected paths is:
public TreePath[] getSelectionPaths();

To find out if a specific path is selected:

public boolean isPathSelected(TreePath path);

To add a checkbox selection:

public void addSelectionPath(TreePath path);

To remove a checkbox selection:

public void removeSelectionPath(TreePath path);

To remove all selected paths:

public void clearSelection();

Install a listener that is notified every time a checkbox selection is changed:

public void addTreeSelectionListener(TreeSelectionListener x);
Usage

You can create a CheckBoxTree just as you create a normal JTree. For example:
CheckBoxTree tree = new CheckBoxTree(new Object[]{""one™, ""two™, ""three"});
or

CheckBoxTree tree = new CheckBoxTree(new DefaultTreeModel());

The CheckBoxTreeSelectionModel is retrieved and assigned respectively with:
public CheckBoxTreeSelectionModel getCheckBoxSelectionModel();

public void setCheckBoxSelectionModel(CheckBoxTreeSelectionModel
checkSelectionModel);

© 2005 Scientific Applications

CheckBoxTree 67

You can also change the gap that exists between the checkbox and the node's value with the
method:

public void setCheckBoxGap(int checkBoxGap);
CheckBoxTree can also be assigned to a TreeTable:

CheckBoxTree tree = new CheckBoxTree();
TreeTable table = new TreeTable();
table.getTreeTableModelAdapter().setTree(tree);

17 TreeFilterHeaderModel

TreeFilterHeaderModel provides filtering to a TreeTableModel through a component that is
installed on the column header of a TreeTable. TreeFilterHeaderModel is an abstract class
whose default implementation is PopupTreeFilterHeaderModel. The available filter
expressions for a column are handled by a ColumnFilterMapper, which has three
implementations:

1. NodeFilterMapper displays every node of the TreeTableModel

2. LevelFilterMapper displays unique values at each node level

3. DefaultColumnFilterMapper combines NodeFilterMapper and LevelFilterMapper so that
you can define the association of each column with one of the two.

By default, PopupTreeFilterHeaderModel uses a DefaultColumnFilterMapper.
17.1 ColumnFilterMapper

ColumnFilterMapper is used to present users with available filter expressions and to create,
apply and remove filters for a FilterTreeTableModel.
The method that is called before filter expressions are made available to the user is:

public void filterVisible(int modellndex, CheckBoxTree tree, TreeTableModel
treeTableModel, TreeTable table);

The above method will prepare the TreeTable accordingly, with values from the given
treeTableModel parameter.

Then, if the filter action is commited, the following method is called:

public void commitFilters(FilterTreeTableModel filterTreeTableModel, Filter filter, int
modellndex);

Otherwise, if the filter action is cancelled, the method below is called:

© 2005 Scientific Applications

68 Table Library Developer's Manual

public void filterCancelled();
The stored filters can be applied any time for any FilterTreeTableModel with the method:

public void applyFilters(FilterTreeTableModel filterTreeTableModel, int[]
excludedModellndexes);

They can also be removed with:
public boolean removeFilters(int[] modellndexes);
Additionally, to determine whether a given column has a filter:

public boolean hasFilter(int modellndex);
17.2 Usage

TreeFilterHeaderModel bears some similarities to FilterHeaderModel. In order to install it to
a TreeTable, you should call:

public void attachToTable(TreeTable treetable) OR
public void attachToTable(TreeTable treetable, FilterTreeTableModel ftm);

You can add and remove ‘filterable’ columns respectively with:

public void setFilterControlInColumn(TableColumn aColumn);
public void removeFilterControlFromColumn(TableColumn aColumn);

By default, all columns are ‘filterable'. This can be controlled with:

public void setAutoCreateAllFilters(boolean newAutoCreateAllFilters);
public boolean getAutoCreateAllFilters();

The Filter that will be used to filter the values of a column is retrieved with the method:
public Filter getFilter(int viewlndex);

The method above will call:

public Filter getDefaultFilter(Class columnClass);

You can set the default filters for a Class with:

public void setDefaultFilter(Class columnClass, Filter filter);

© 2005 Scientific Applications

TreeFilterHeaderModel 69

By default, Filters for all the common objects (Strings, Dates, Booleans etc) are installed at
construction time with:

protected void createDefaultFilters();

The default implementation, PopupTreeFilterHeaderModel, creates a
DefaultColumnFilterMapper that allows each column to be associated to either a
LevelFilterMapper or a NodeFilterMapper. Therefore, you can have some columns in which
the filtered node children are specifically identified and others, which filter tree nodes based
on their tree level.

Example: Use a PopupTreeFilterHeaderModel to filter the values of a TreeTableModel. All
columns should show every node in the data model, except for the first column.

/[create a (unfiltered) treetablemodel:
DefaultMutableTreeTableModel dataModel = new DefaultMutableTreeTableModel();
...fill dataModel with some values and columns

/[create the FilterTreeTableModel and the tree-table
DefaultFilterTreeTableModel ftm = new DefaultFilterTreeTableModel(dataModel);
TreeTable treeTable = new TreeTable(ftm);

/[create the PopupTreeFilterHeaderModel and install it to the tree-table
PopupTreeFilterHeaderModel popup = new PopupTreeFilterHeaderModel();
popup.setTableHeader((FilterTableHeader) treeTable.getTableHeader());
popup.attachToTable(treeTable);

/lget the DefaultColumnFilterMapper instance
DefaultColumnFilterMapper mapper = (DefaultColumnFilterMapper) popup.
getFilterMapper();

/lchange the default mapping mode to NODE
mapper.setDefaultMode(DefaultColumnFilterMapper.NODE_MODE);

/Imake the first column show filter expressions per level
mapper.setLevel(0);

18 VetoableTableColumnModel

VetoableTableColumnModel is an extension to TableColumnModel that can prevent or
'veto' the addition, removal and moving of table columns from happening. Having a
VetoableTableColumnModel as the table's and table header's column model can thus prove
extremely useful in cases where we do not want specific columns to be removed or moved to
a different location. In addition, you can prevent table columns from being added. By default,

© 2005 Scientific Applications

70

Table Library Developer's Manual

18.1

the TableColumnModels used in Table Library all implement the
VetoableTableColumnModel interface.

VetoableTableColumnModelListener

In order to control which columns are added, removed or moved, you should write your own
VetoableTableColumnModelListener.

VetoableTableColumnModelListener is a listener that is notified before table columns are
added, moved or removed. The methods that are called are:

public void columnWillBeAdded(TableColumnModelEvent e) throws
ColumnModelVetoException

public void columnWillBeMoved(TableColumnModelEvent e) throws
ColumnModelVetoException

public void columnWillBeRemoved(TableColumnModelEvent e) throws
ColumnModelVetoException

A VetoableTableColumnModelListener can 'veto' the event by inspecting the supplied
TableColumnModelEvent and fire a ColumnModelVVetoException where appropriate. If the
event is allowed to occur, a ColumnModelVetoException should not be thrown.

From Sun's documentation regarding TableColumnModelEvents, having e as the
TableColumnModelEvent, bear in mind that:

for removal events: e.getFromIndex() identifies the column to be removed

for addition events: e.getTolndex() identifies the column to be added

for move events: e.getFromindex() identifies the column to move from while e.getTolndex
() the column to move to.

VetoableTableColumnModel has methods for adding and removing
VetoableTableColumnModelListeners:

public void addVetoableColumnModelListener(VetoableTableColumnModelListener I)
public void removeVetoableColumnModelListener
(VetoableTableColumnModelListener I)

Example 1: Veto the removal of the third table column.

public class MyVetoableTableColumnModelListener implements
VetoableTableColumnModelListener {

public void columnWillBeAdded(TableColumnModelEvent e) throws
ColumnModelVetoException {

public void columnWillBeMoved(TableColumnModelEvent e) throws
ColumnModelVetoException {

}

© 2005 Scientific Applications

VetoableTableColumnModel 71

public void columnWillBeRemoved(TableColumnModelEvent e) throws
ColumnModelVetoException {
if (e.getFromindex() == 2) throw new ColumnModelVetoException(e);
}

}

Example 2: Veto the move of a column before the third column.

public class MyVetoableTableColumnModelListener implements
VetoableTableColumnModelListener {

public void columnWillBeAdded(TableColumnModelEvent e) throws
ColumnModelVetoException {

public void columnWillBeMoved(TableColumnModelEvent e) throws
ColumnModelVetoException {
if (e.getFromindex() > 2 && e.getTolndex() <= 2) throw new
ColumnModelVetoException(e);

public void columnWillBeRemoved(TableColumnModelEvent €) throws
ColumnModelVetoException {

}
}
18.2 DefaultVetoableColumnModel

DefaultVetoableColumnModel is a VetoableTableColumnModel implementation that is
used throughout Table Library. More specifically, it is created by AdvancedJTable and
AdvancedTableHeader and also used by their subclasses, TreeTable, GroupTableHeader and
FilterTableHeader. TreeTableHeader also uses a VetoableTableColumnModel,
TreeTableColumnModelAdapter, which is described in its own section.

18.3 ColumnModelVetoException

ColumnModelVetoException is thrown from VetoableTableColumnModelListeners to
indicate that a specific TableColumnModelEvent should not take place. The exception is
constructed by specifying the TableColumnModelEvent and an optional message string:

public ColumnModelVetoException(TableColumnModelEvent event)
public ColumnModelVetoException(TableColumnModelEvent event, String message)

You can get the event that was responsible for the exception, with the method:

public TableColumnModelEvent getColumnModelEvent()

© 2005 Scientific Applications

72

Table Library Developer's Manual

19

19.1

19.2

19.3

TableAssistant

TableAssistant is a class that provides additional functions to a JTable. More specifically you
can:

automatically resize the column of a table to that column'’s contents.
dynamically add/remove columns through a popup menu.
display a more detailed dialog for specifying which columns will be visible.

Creating

A TableAssistant object is created internally by AdvancedJTable. You can get an instance of
it by calling AdvancedJTable's method:

public TableAssistant getTableAssistant();
You can also use this class with your own custom JTable:
JTable table = new JTable();

TableAssistant tableAssistant = new TableAssistant(table);
tableAssistant.register(table.getColumnModel());

Autoresize Table Columns

The column of a table is automatically resized to the greatest preferred width of all cells
under that column, when the column is double-clicked on its border.

In addition to the column being resized upon double-clicking, you can also invoke this
behaviour programmatically by calling TableAssistant's method:

public void resizeColumnToContents(int column);
Column Filter

TableAssistant provides a popup through which the columns of the table can be dynamically
added/removed. The popup is shown upon right-clicking on the table header.

You can make the popup menu to show upon right-click mouse events on the header by
calling TableAssistant's method:

public void setShowPopup(boolean showPopup);

© 2005 Scientific Applications

TableAssistant 73

You can also determine if the popup will be shown by calling:
public boolean getShowPopup();

Finally, an instance of the popup menu can be retrieved by calling:
public JPopupMenu getColumnPopup();

Example: Make the popup menu visible.

JPopupMenu popup = tableAssistant.getColumnPopup();
popup.setVisible(true);

19.4 More Dialog

If the table model contains a large number of columns, the column filter popup menu will
become extremely large. For this reason, TableAssistant may display an additional dialog,
where users can visually select which columns to display from a scrollable list.

You control this dialog's visibility with:

public void setShowMore(boolean showMore);
public boolean getShowMore();

Also the maximum number of columns to display in the column filter popup menu is
controlled with:

public void setMaxColumns(int maxColumns);
public int getMaxColumns();

20 TableReorder

TableReorder acts on a JTable in order to ensure that the same rows are selected after the
ReorderEvent is generated.

The table selections after data changes is a two-step process:

First, ReorderEvents are processed by this ReorderListener, in which step a map of how the
rows have changed are stored.

Next, and after the table has finished painting the affected by the TableModelEvent area, the
following method is called:

public void reselectTableRows(int[] selRows, int[] maplndex);

© 2005 Scientific Applications

74

Table Library Developer's Manual

20.1

21

21.1

, Which updates the table selection.
Creating

A TableReorder object is created and managed internally by an AdvancedJTable. The
following AdvancedJTable methods are used for creating, getting and setting the table
reorder:

protected TableReorder createReorder();
public TableReorder getTableReorder();

You can also use this class with your own JTable subclass:
TableReorder tableReorder = new TableReorder(table);
You also need to override JTable's method

public void tableChanged(TableModelEvent e);

to look like:

public void tableChanged(TableModelEvent e) {

super.tableChanged(e);
tableReorder. reselectTableRows();

AdvancedTableHeader

AdvancedTableHeader extends JTableHeader in order to provide for a header that does not
let column reordering when the column is being dragged with the right mouse button pressed.
Additionally, you can specify which columns are allowed to be dragged and reordered.

Creating

AdvancedJTable creates and manages an AdvancedTableHeader subclass,
AdvancedJTable.InnerTableHeader.

You can get an instance of the header as you would with JTable:

public JTableHeader getTableHeader();

© 2005 Scientific Applications

AdvancedTableHeader 75

or set it with:

public void setTableHeader(JTableHeader header);

Additionally, you can use AdvancedTableHeader in your custom JTable subclass:
JTable table = new JTable();

AdvancedTableHeader header = new AdvancedTableHeader(table.getColumnModel());
table.setTableHeader(header);

21.2 Specifying which columns can be dragged

You can control which columns can be dragged/reordered by overriding
AdvancedTableHeader's method:

public boolean isReorderingAllowed(int column);
, and return true or false accordingly.

Example: Make the second column not reorderable:
public boolean isReorderingAllowed(int column) {

if (column == 1) return false;
return true;

22 AdvancedJScrollPane

AdvancedJScrollPane has the ability to display a last column at the end of the table, and also
to freeze some rows/columns at the edges of the table.

22.1 Creating

You can create and use an AdvancedJScrollPane as you would normally do with a
JScrollPane:

AdvancedJScrollPane scroller = new AdvancedJScrollPane();
JTable table = new JTable(); //or AdvancedJTable();
scroller.setViewPortView(table);

JPanel p = new JPanel();

p.setLayout(new BorderLayout());

p.add(scroller);

© 2005 Scientific Applications

76

Table Library Developer's Manual

23

23.1

23.2

23.3

Saving/loading state

The sort, filter and group states of a table or treetable can be saved and loaded anytime, by
using methods of a SortTableModel, FilterHeaderModel and DynamicTreeTableModel
respectively.

Sort state

SortTableModel contains a method for retrieving the sort state as a string:
public String getSortStatesAsString();

A string can also be used to load the sort states:

public void setSortStatesAsString(String state);

Note: In your application, you could write the sort state string to a file when exiting and load
it upon initialization.

Filter state

FilterHeaderModel contains a method for serializing the filter state to an
ObjectOutputStream:

public void saveFilterState(ObjectOutputStream out);
An ObjectInputStream can also be used to load the filter state:
public void loadFilterState(ObjectinputStream in);

Note: In your application, you could write the filter state to a file when exiting and load it
upon initialization.

Group state

DynamicTreeTableModel and ComparableTreeTableModel contain methods for serializing
the TreeTableComparators, and thus the group state, to an ObjectOutputStream:

public void saveComparators(ObjectOutputStream out);

© 2005 Scientific Applications

Saving/loading state 77

An ObjectInputStream can also be used to load the TreeTableComparators:
public void loadComparators(ObjectinputStream in);

Note: In your application, you could write the group state to a file when exiting and load it
upon initialization.

24 Searching

A table structure can be searched throughout by making use of the classes in the com.sciapp.
table.search package. This happens by constructing a SearchModelEvent and have a
SearchModel send it out to its SearchModelListeners. The actual searching is performed
by TableSearch, a class which uses a Filter in order to find matching cell values.
SearchPanel and SearchTablePanel are responsible for creating and propagating the search
model event, and finally, TableSelector acts on the event by selecting the matched table
cells.

24.1 SearchModelEvent

The SearchModelEvent specifies from which cell the search will start, the search direction
(forwards or backwards) and the Search object that will perform the actual searching.

In fromRow and fromColumn,

NEXT_ROW and NEXT_COLUMN denote the next row/column from the previously
matched, while

ALL_ROWS and ALL_COLUMNS imply that all rows/columns of the table should be
searched respectively.

24.2 Search Panels

We have created two panels through which users can search for data in a table: SearchPanel
and SearchTablePanel. Both these classes construct an appropriate SearchModelEvent
which is sent to their SearchModelListeners.

SearchPanel is used to find next or previous occurrences of a string which is entered inside a
text field. By default, SearchPanel will search through all columns, using a (case-sensitive)
StringFilter.

SearchTablePanel is also used to find next or previous of occurrences of object patterns,
however, which are presented to the user via a VisualSeeker's panel, according to the
column’s java class. There are VisualSeekers for Strings, Numbers, Dates and Boolean

© 2005 Scientific Applications

78

Table Library Developer's Manual

24.3

24.4

25

25.1

values.
TableSearch

TableSearch performs the actual table searching via its search(TableModel, Object, int, int,
boolean) method which returns the matching row.

The matching column can be retrieved with getLastMatchingColumn(). A filter is used to
decide whether to accept a table's cell value. The search respects the parameters in the search
method, but if the default column is set to anything other than ALL_COLUMNS, searching
will only take place at the specified default column.

Example

/[first create the search panel in order to present search options to the user
SearchTablePanel search = new SearchTablePanel(tableModel);

OR
SearchPanel search = new SearchPanel();

/Inow create a SearchModelL.istener for selecting the matched cells.
TableSelector selector = new TableSelector(table);

OR
TableStyleSelector selector = new TableStyleSelector();
/[finally add selector to be notified by the search model events generated from the

search panel
search.getSearchModel().addSearchModelL.istener(selector);

Editors

TableCellEditors are special objects responsible for editing the cells of a JTable.
We supply two extra editors in supplement to those in Sun's JTable framework, one for
editing dates and the other for presenting multiple values via a combo box.

DateEditor

DateEditor is an editor for table cells that handles the editing of Date objects. You can create

© 2005 Scientific Applications

Editors 79

a DateEditor with:
DateEditor de = new DateEditor();
AdvancedJTable installs a DateEditor upon initialization.

The editing itself is performed by a JDateChooser. JDateChooser is a JPanel that contains
controls for specifying year, month, date and time.

25.2 TableComboBoxEditor

TableComboBoxEditor is an editor for table and tree table cells that uses multiple values
contained in a JComboBox. TableComboBoxEditor has three constructors:

TableComboBoxEditor();
TableComboBoxEditor(JComboBox comboBox);
TableComboBoxEditor(String[] items);

Example: Create a TableComboBoxEditor.
String countries[] = new String[] {
"Greece"',
"Argentina',
"Germany"',
""Spain™,

}

TableCellEditor combo = new com.sciapp.editors. TableComboBoxEditor(countries);
25.3 Setting an editor

You can set your own editor by calling JTable's following method:

public void setDefaultEditor(Class columnClass, TableCellEditor editor);
Example: Set a date editor

JTable table = new JTable();

DateEditor de = new DateEditor();

table.setDefaultEditor(Date.class, de);

Example: Set a TableComboBoxEditor editor

String countries[] = new String[] {
"Greece",

© 2005 Scientific Applications

80 Table Library Developer's Manual
"Argentina',
"Germany"',
"Spain",
) | o . .
TableCellEditor combo= new com.sciapp.editors. TableComboBoxEditor(countries);
TableColumn countryColumn;
countryColumn = table.getColumnModel().getColumn(2);
countryColumn.setCellEditor(combo);
26 Exporting Data
A TableModel can be easily exported to an OutputStream via the various ExportManager
implementations. ExportManagers need to implement the method:
public void write(javax.swing.table. TableModel model, java.io.OutputStream out);
You can use DelimitedExportManager to write a table model in a delimited format or
XMLEXxportManager to create an XML document.
26.1 DelimitedExportManager
DelimitedExportManager writes a table model in a delimited format. The delimiter is
specified in the constructor. There is also the option of writing the column values as the
document header.
26.2 XMLExportManager

XMLExportManager writes a table model in an XML format. You should define a 'path’
element in the constructor, which follows the XPath specification. The specified path defines
parent-child node relationships from left to right, with each 'node’ being separated with a
slash (/).

e.g.

/bookstore/book

person etc.

An XML document will be created with the specified paths and the table columns as element
nodes, and the cell values as the atomic values of the column nodes.

© 2005 Scientific Applications

Internationalization 81

27 Internationalization

Support for localization/internationalization is provided through a property bundle file,
TableLibraryBundle.properties. This is a text file with key values in capital letters
associated to values. By modifying this file with a simple text editor, you can use your own
text strings for the various Ul components defined in the library.

The file TableLibraryBundle.properties is provided with Table Library for the default
system locale. You can supply your own property file for other locales by creating a
TableLibraryBundle_[locale].properties file, where [locale] is the locale code. For
example:

ru for Russian,

en for English,

en_UK for UK English,

de for German,.

Make sure you publish this property file with your application.

See Sun's documentation on java.util.ResourceBundle for more information

27.1 Usage

TableResourceManager is a class that facilitates the retrieval of resource bundle strings.
The text strings on the various Ul components of our library are retrieved with
TableResourceManager's method:

public static final String getString(String resourceKey);

By default, at startup, the ResourceBundle corresponding to the default locale is instantiated.
However, you can also assign the ResourceBundle that will be used with the methods:

public static void setResourceBundle(ResourceBundle resource);
public static void setResourceBundle(String resource);
public static void setResourceBundle(String resource, java.util.Locale locale);

Finally, you can retrieve the current ResourceBundle with:

public static ResourceBundle getResourceBundle();

© 2005 Scientific Applications

82

Table Library Developer's Manual

28

28.1

28.2

28.3

Renderers

TableCellRenderers are special objects responsible for rendering the cells of a JTable.
We supply some extra renderers in addition to those in Sun's JTable framework.

DefaultRenderer

DefaultRenderer is the superclass of all others renderers in the com.sciapp.renderers package.
It has methods for drawing alternative rows of a table with different color:

public void setOddColor(Color c);
public void setEvenColor(Color c);

It can also add some spaces at the end of the cell to improve the presentation of the table.
public void setSpacing(boolean spacing);
public boolean getSpacing();

public void setSpaces(int spaces);

AdvancedJTable installs a DefaultRenderer instance as the renderer for the Object class.
ProgressBarRenderer

ProgressBarRenderer is used to display the data as a progress bar value. You can specify
the progress bar at construction time and retrieve it later:

JProgressBar bar = new JProgressBar();
ProgressBarRenderer barRend = new ProgressBarRenderer(bar);

or

ProgressBarRenderer barRend = new ProgressBarRenderer();
JProgressBar bar = barRend.getProgressBar();

SizeRenderer

SizeRenderer is a table cellrenderer suitable for displaying the length of a file in octets
(Bytes, KB, MB, GB etc).

The octet measure's text is part of the internationalization resource bundle,
TableLibraryBundle.

© 2005 Scientific Applications

Renderers

28.4

28.5

Other renderers

Renderers for all the common objects are provided.
i.e.
DateRenderer — for Dates

BooleanRenderer — for Booleans
NumberRenderer — for Numbers

Setting a renderer

There are a number of ways to to set a cell renderer.

1. Use JTable's method:

public void setDefaultRenderer(Class ¢, TableCellRenderer renderer);
Example:

TableCellRenderer cellDateRenderer = new DateRenderer();
table.setDefaultRenderer(Date.class, cellDateRenderer);

2. Assign a cell renderer to a column.

TableColumn column = table.getColumnModel().getColumn(2);
column.setRenderer(new DateRenderer());

3. Override the JTable's method:

public TableCellRenderer getCellRenderer(int row, int column);

to look like:

public TableCellRenderer getCellRenderer(int row, int column) {
if (column==1){

return cellDateRenderer;
}

return super.getCellRenderer(row, column);

}

4. Override the JTable's method:

public void addColumn(TableColumn aColumn);

83

© 2005 Scientific Applications

84

Table Library Developer's Manual

29

29.1

to look like:

public void addColumn(TableColumn aColumn) {
super.addColumn(aColumn);
if (aColumn.getModellndex() == 1) {
aColumn.setCellRenderer(cellDateRenderer);
}

Appendix

This section contains source code listings.

Appendix |

Source code for a ListTableModel implementation that extends
javax.swing.table.DefaultTableModel

import javax.swing.table.*;
import java.util.*;

import com.sciapp.table.ListTableModel;

public class DefaultListTableModel extends DefaultTableModel implements
ListTableModel {
public DefaultListTableModel() {

super();
}
public DefaultListTableModel(java.lang.Object[][] data, java.lang.Object][]
columnNames) {
super(data, columnNames);

public DefaultListTableModel(java.lang.Object[] columnNames, int numRows) {
super(columnNames, numRows);

public DefaultListTableModel(int numRows, int numColumns) {
super(numRows, numColumns);

public DefaultListTableModel(java.util.Vector columnNames, int numRows) {
super(columnNames, numRows);

public DefaultListTableModel(java.util.Vector data, java.util.Vector

© 2005 Scientific Applications

Appendix

columnNames) {
super(data, columnNames);

public void addRow(java.lang.Object row) {
if (row instanceof Vector)
addRow((Vector) row);
else
addRow((Object[]) row);

public void addRows(java.util.List addedRows) {
for (inti = 0; i < addedRows.size(); i++) {
addRow(addedRows.get(i));
}

}

public void clear() {
int prevsize = dataVector.size();
dataVector.clear();

/Inotify
fireTableRowsDeleted(0, prevsize);

}

public Object getCellValue(Object o, int index) {
return ((Vector) 0).get(index);

}

public List getRows() {
return dataVector;

public void removeRows(int[] deletedRows) {
int len = deletedRows.length;
int min = deletedRows[0];
int max = deletedRows[len - 1];
while (len-- > 0) {
dataVector.removeElementAt(deletedRows[len]);
}

/Inotify
fireTableRowsDeleted(min, max);

29.2 Appendix Il

Source code to make cell spanning possible for a custom JTable subclass.

It is assumed that spanDrawer represents a SpanDrawer instance.

© 2005 Scientific Applications

86

Table Library Developer's Manual

Override JTable's method
public Component prepareRenderer(TableCellRenderer renderer, int row, int column);
to look like:

public Component prepareRenderer(TableCellRenderer renderer, int row, int column)

{

Component normalComp;
boolean useSpan = spanDrawer.getUseSpan();

if (useSpan && spanDrawer.isCellMerged(row, column)) {
CellSpan cs = spanDrawer.getSpanModel().getCellSpanAt(row, column);
int spannedRow = cs.getSpannedRow();
int spannedColumn = cs.getSpannedColumn();

TableCellRenderer rend = getCellRenderer(spannedRow,
spannedColumn);
normalComp = prepareRenderer(rend, spannedRow, spannedColumn);
}

else {

normalComp = super.prepareRenderer(renderer, row, column);
}

Component ret;
if (useSpan) ret = spanDrawer.prepare(normalComp, row, column);
else ret = normalComp;

return ret;

© 2005 Scientific Applications

	Preface
	TableModels
	ListTableModel
	ObjectTableModel
	ListTableMap

	AdvancedJTable
	Creating
	Inherent Features
	Dummy Last Column
	Fixed First Column
	Table State

	Common Features
	Autoresize Table Columns
	Column Filter
	Reorderable Column Header
	Table Selections after data change
	Cell Spanning
	Row Header
	Groupable Header
	Locked Rows/Columns
	Visual Appearance
	Editors

	TreeTable (old impl.)
	Creating
	TreeTableModel
	Creating
	TreeTableRows
	Getting to the data
	TreeTableComparators
	Aggregators
	Footers

	Aggregate Renderers
	Cell Spanning
	Grouping Panel

	Treetable (new impl.)
	Creating
	TreeTableModelAdapter
	TreeTableModel
	TreeTable Nodes
	AbstractTreeTableModel
	MutableTreeTableModel
	ComparableTreeTableModel
	DefaultMutableTreeTableModel
	ObjectTreeTableModel

	TreeModelMap
	DynamicTreeTableModel
	Creating
	TreeTableRows
	Getting to the data
	TreeTableComparators
	Aggregators
	Footers

	TreeTableModelMap
	Sorting
	Filtering
	DirectoryTreeTableModel
	RemoteTreeTableModel

	Renderers
	Cell Spanning
	GroupingPanel

	Sorting Data
	Creating
	Comparators
	Getting to the data
	Single and multi column sorting
	Define which columns can be sorted
	Controlling the visual behaviour of SortTableModel

	Filtering Data
	Creating
	Filters
	TableFilters
	Getting to the data
	Presenting filter options to the user
	VisualFilters
	FilterTablePanel
	FilterHeaderModel

	Caching
	CacheableTableModel
	CacheableTreeTableModel
	Cache
	CachedListTableModel
	CachedTableModel

	GroupTableHeader
	GroupTableColumn
	GroupTableColumnModel
	GroupTableColumnModelListener
	Usage

	Asynchronous Transfers (RemoteModels)
	RemoteTableModel
	RemoteTreeTableModel
	RemoteTableListener
	StatusPanel
	Pending Value
	Style

	Locked Rows/Columns
	LockedTableModel
	LockedTableModelListener
	Usage

	Cell Spanning
	SpanDrawer
	SpanModel
	SpanModelEvent and SpanModelListener

	Styles
	Creating
	DefaultStyle
	StyleModel

	JTableRowHeader
	Creating
	Controlling the visual appearance
	Setting the column width
	Controlling the row header's visibility

	TreeTableHeader
	TreeTableColumnModel
	DefaultTreeTableColumnModel
	TreeTableColumnModelAdapter
	Usage

	CheckBoxTree
	CheckBoxTreeSelectionModel
	Usage

	TreeFilterHeaderModel
	ColumnFilterMapper
	Usage

	VetoableTableColumnModel
	VetoableTableColumnModelListener
	DefaultVetoableColumnModel
	ColumnModelVetoException

	TableAssistant
	Creating
	Autoresize Table Columns
	Column Filter
	More Dialog

	TableReorder
	Creating

	AdvancedTableHeader
	Creating
	Specifying which columns can be dragged

	AdvancedJScrollPane
	Creating

	Saving/loading state
	Sort state
	Filter state
	Group state

	Searching
	SearchModelEvent
	Search Panels
	TableSearch
	Example

	Editors
	DateEditor
	TableComboBoxEditor
	Setting an editor

	Exporting Data
	DelimitedExportManager
	XMLExportManager

	Internationalization
	Usage

	Renderers
	DefaultRenderer
	ProgressBarRenderer
	SizeRenderer
	Other renderers
	Setting a renderer

	Appendix
	Appendix I
	Appendix II

