

OpenVPN
Building and Integrating Virtual Private Networks

Learn how to build secure VPNs using this powerful
Open Source application

Markus Feilner

 BIRMINGHAM - MUMBAI

OpenVPN
Building and Integrating Virtual Private Networks

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2006

Production Reference: 1170406

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-85-X
www.packtpub.com

Cover Design by www.visionwt.com

Credits

Author
Markus Feilner

Reviewers
Arne Bäumler
Norbert Graf
Markus Heller

Technical Editor
Jimmy Karumalil

Editorial Manager
Dipali Chittar

Development Editor
Louay Fatoohi

Indexer
Ashutosh Pande

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Helen Wood

About the Author

Markus Feilner is a Linux author, trainer, and consultant from Regensburg, Germany,
and has been working with open-source software since the mid 1990s. His first contact
with UNIX was a SUN cluster and SPARC workstations at Regensburg University
(during his studies of geography). Since the year 2000, he has published several
documents used in Linux training all over Germany. In 2001, he founded his own Linux
consulting and training company, Feilner IT (http://www.feilner-it.net).
Furthermore, he is an author, currently working as a trainer, consultant, and systems
engineer at Millenux, Munich, where he focuses on groupware, collaboration, and
virtualization with Linux-based systems and networks.

He is interested in anything about geography, traveling, photography, philosophy
(especially that of open-source software), global politics, and literature, but always has
too little time for these hobbies.

I'd like to thank all the people from the OpenVPN project and mailing list, all developers
from all related projects (you are doing a great job, thank you!), and especially James
Yonan for his contribution, everyone at Packt (especially Louay and Jimmy), Martin Kluge
for BSD and networking know-how, Daniel Falkner for Mac screenshots, Sebastian
Steinhauer for help on OpenWRT and embedded Linux, Ralf Hildebrandt for help on
scripting OpenVPN, Sylvia Eisenreich for help in language matters, and everyone whom I
might have forgotten now. A very big thank-you goes to my reviewers Arne, Norbert, and
Markus—without your help this would not have been possible. Thank you Arne, for
spending so much time in research!

For Agnes.

About the Reviewers

Arne Bäumler studies information technologies at the University of Applied Sciences in
Regensburg, Germany. He is interested in IT-security and network technologies. During his first
practical semester at Feilner-IT, he was concerned with research, programming, testing, and
rolling out Linux solutions.

Norbert Graf is a professional IT specialist in Munich with many years of experience in
network security and groupware (both on Windows and Linux). His special fields of interest
include Linux Firewalls, Windows-Linux cooperation for groupware, and Samba.

Markus Heller has many years of industrial working experience in open source, security, and
network engineering. As an author and reviewer he has contributed to many publications and
articles. He regularly teaches classes on scripting languages and computational linguistics at
Munich University, where he is working on his doctorate.

Table of Contents

Preface 1
Chapter 1: VPN—Virtual Private Network 5

Branches Connected by Dedicated Lines 5
Broadband Internet Access and VPNs 6

How Does a VPN Work? 7
What are VPNs Used For? 9
Networking Concepts—Protocols and Layers 10
Tunneling and Overhead 11

VPN Concepts—Overview 13
A Proposed Standard for Tunneling 13
Protocols Implemented on OSI Layer 2 13
Protocols Implemented on OSI Layer 3 14
Protocols Implemented on OSI Layer 4 15
OpenVPN—An SSL/TLS-Based Solution 15

Summary 15
Chapter 2: VPN Security 17

VPN Security 17
Privacy—Encrypting the Traffic 18

Symmetric Encryption and Pre-Shared Keys 18
Reliability and Authentication 19

The Problem of Complexity in Classic VPNs 19
Asymmetric Encryption with SSL/TLS 20

SSL/TLS Security 20
Understanding SSL/TLS Certificates 21
Trusted Certificates 21
Self-Signed Certificates 23
SSL/TLS Certificates and VPNs 25

Summary 25

Table of Contents

Chapter 3: OpenVPN 27
Advantages of OpenVPN 27
History of OpenVPN 28

OpenVPN Version 1 29
OpenVPN Version 2 31

Networking with OpenVPN 32
OpenVPN and Firewalls 33
Configuring OpenVPN 34
Problems with OpenVPN 35

OpenVPN Compared to IPsec VPN 35
Sources for Help and Documentation 36
The Project Community 36

Documentation in the Software Packages 37
Summary 37

Chapter 4: Installing OpenVPN 39
Prerequisites 39
Obtaining the Software 40
Installing OpenVPN on Windows 41

Downloading and Starting Installation 41
Selecting Components and Location 42
Finishing Installation 44
Testing the Installation—A First Look at the Panel Applet 45

Installing OpenVPN on Mac OS X (Tunnelblick) 46
Testing the Installation—The Tunnelblick Panel Applet 47

Installing OpenVPN on SuSE Linux 48
Using YaST to Install Software 49

Installing OpenVPN on Redhat Fedora Using yum 52
Installing OpenVPN on RPM-Based Systems 55

Using wget to Download OpenVPN RPMs 55
Testing Installation and Installing with rpm 56
Installing OpenVPN and the LZO Library with wget and RPM 56
Using rpm to Obtain Information on the Installed OpenVPN Version 57

Installing OpenVPN on Debian 58
Installing Debian Packages 60
Using Aptitude to Search and Install Packages 62
OpenVPN—The Files Installed on Debian 64

Installing OpenVPN on FreeBSD 64
ii

Table of Contents

Installing a Newer Version of OpenVPN on FreeBSD—The Port System 66
Installing the Port System with sysinstall 66
Downloading and Installing a BSD Port 68

Troubleshooting—Advanced Installation Methods 69
Installing OpenVPN from Source Code 69
Building Your Own RPM File from the OpenVPN Source Code 71
Building and Distributing Your Own DEB Packages 72
Enabling Linux Kernel Support for TUN/TAP Devices 72

Using Menuconfig to Enable TUN/TAP Support 73
Internet Links, Installation Guidelines, and Help 75
Summary 76

Chapter 5: Configuring an OpenVPN Server—The First Tunnel 77
OpenVPN on Microsoft Windows 77

Generating a Static OpenVPN Key 78
Creating a Sample Connection 80
Adapting the Sample Configuration File Provided by OpenVPN 81
Starting and Testing the Tunnel 83

A Brief Look at Windows OpenVPN Network Interfaces 84
Connecting Windows and Linux 86

File Exchange between Windows and Linux 86
Installing WinSCP 87
Transferring the Key File from Windows to Linux with WinSCP 89
The Second Pitfall—Carriage Return/End of Line 90

Configuring the Linux System 91
Testing the Tunnel 93

A Look at the Linux Network Interfaces 93
Running OpenVPN Automatically 94

OpenVPN as Server on Windows 94
OpenVPN as Server on Linux 95
Runlevels and init Scripts on Linux 96
Using runlevel and init to Change and Check Runlevels 97
The System Control for Runlevels 97
Managing init Scripts 98

Using Webmin to Manage init Scripts 99
Using SuSE's YaST Module System Services (Runlevel) 101

Troubleshooting Firewall Issues 104
Deactivating Windows XP Service Pack 2 Firewall 105
Stopping the SuSE Firewall 106

Summary 108

 iii

Table of Contents

Chapter 6: Setting Up OpenVPN with X509 Certificates 109
Creating Certificates 109
Certificate Generation on Windows XP with easy-rsa 110

Setting Variables—Editing vars.bat 111
Creating the Diffie-Hellman Key 112
Building the Certificate Authority 113
Generating Server and Client Keys 114

Distributing the Files to the VPN Partners 117
Configuring OpenVPN to Use Certificates 119
Using easy-rsa on Linux 121

Preparing Variables in vars 122
Creating the Diffie-Hellman Key and the Certificate Authority 122
Creating the First Server Certificate/Key Pair 123
Creating Further Certificates and Keys 124

Troubleshooting 124
Summary 125

Chapter 7: The Command openvpn and its Configuration File 127
Syntax of openvpn 127

OpenVPN Command-Line Parameters 128
Using OpenVPN at the Command Line 129

Parameters Used in the Standard Configuration File for a Static Key Client 130
Compressing the Data 130
Controlling and Restarting the Tunnel 132
Debugging Output—Troubleshooting 133

Configuring OpenVPN with Certificates—Simple TLS Mode 134
Overview of OpenVPN Parameters 135

General Tunnel Options 135
Routing 137
Controlling the Tunnel 138
Scripting 139
Logging 140
Specifying a User and Group 141
The Management Interface 141
Proxies 143
Encryption Parameters 143
Testing the Crypto System with --test-crypto 144

iv

Table of Contents

SSL Information—Command Line 145
Server Mode 147

Server Mode Parameters 148
--client-config Options 150

Client Mode Parameters 151
Push Options 152

Important Windows-Specific Options 153
Summary 154

Chapter 8: Securing OpenVPN Tunnels and Servers 155
Securing and Stabilizing OpenVPN 155
Linux and Firewalls 157

Debian Linux and Webmin with Shorewall 158
Installing Webmin and Shorewall 158
Preparing Webmin and Shorewall for the First Start 160
Starting Webmin 161
Configuring the Shorewall with Webmin 165
Creating Zones 167
Editing Interfaces 168
Default Policies 169
Adding Firewall Rules 171

Troubleshooting Shorewall—Editing the Configuration Files 173
OpenVPN and SuSEfirewall 175
Troubleshooting OpenVPN Routing and Firewalls 179

Configuring a Router without a Firewall 179
iptables—The Standard Linux Firewall Tool 179

Configuring the Windows Firewall for OpenVPN 182
Summary 186

Chapter 9: Advanced Certificate Management 187
Certificate Management and Security 187
Installing xca 187
Using xca 189

Creating a Database 190
Importing a CA Certificate 191
Creating and Signing a New Server/Client Certificate 195
Revoking Certificates with xca 200

Using TinyCA2 to Manage Certificates 202
Importing Our CA 202
Using TinyCA2 for CA Administration 203

 v

Table of Contents

Creating New Certificates and Keys 204
Exporting Keys and Certificates with TinyCA2 206
Revoking Certificates with TinyCA2 207

Summary 208
Chapter 10: Advanced OpenVPN Configuration 209

Tunneling a Proxy Server and Protecting the Proxy 209
Scripting OpenVPN—An Overview 211
Using Authentication Methods 212
Using a Client Configuration Directory with Per-Client Configurations 214
Individual Firewall Rules for Connecting Clients 216
Distributed Compilation through VPN Tunnels with distcc 218
Ethernet Bridging with OpenVPN 219
Automatic Installation for Windows Clients 222
Summary 226

Chapter 11: Troubleshooting and Monitoring 227
Testing the Network Connectivity 227
Checking Interfaces, Routing, and Connectivity on the VPN Servers 229
Debugging with tcpdump and IPTraf 232
Using OpenVPN Protocol and Status Files for Debugging 234
Scanning Servers with Nmap 236
Monitoring Tools 237

ntop 237
Munin 238

Hints to Other Tools 239
Summary 239

Appendix A: Internet Resources 241
VPN Basics 241

OpenVPN Resources 242
Configuration 245
Scripts and More 247
Network Tools 247
Howtos 248
Openvpn GUIs 249

Index 251

vi

Preface

OpenVPN is an outstanding piece of software that was invented by James Yonan in the year 2001
and has steadily been improved since then. No other VPN solution offers a comparable mixture of
enterprise-level security, usability, and feature richness. We have been working with OpenVPN
for many years now, and it has always proven to be the best solution.

This book is intended to introduce OpenVPN Software to network specialists and VPN newbies
alike. OpenVPN works where most other solutions fail and exists on almost any platform; thus it
is an ideal solution for problematic setups and an easy approach for the inexperienced.

On the other hand, the complexity of classic VPN solutions, especially IPsec, gives the impression
that VPN technology in general is difficult and a topic only for very experienced (network and
security) specialists. OpenVPN proves that this can be different, and this book is aimed to
document that.

I want to provide both a concise description of OpenVPN's features and an easy-to-understand
introduction for the inexperienced. Though there may be many other possible ways to success in
the scenarios described, the ones presented have been tested in many setups and have been
selected for simplicity reasons.

What This Book Covers
This book provides in-depth information on OpenVPN. After three introductory chapters about
VPNs, security, and OpenVPN, some chapters focus on basic OpenVPN issues like installation
and configuration on various platforms. Then a block of chapters dealing with advanced
configurations and security follows, and the book closes with a chapter on troubleshooting and an
appendix full of Internet links.

Chapter 1: VPN—Virtual Private Network gives a brief introduction to Virtual Private Networks
and discusses in brief networking concepts.

Chapter 2: VPN Security introduces basic security concepts necessary to understand VPNs—
OpenVPN in particular. We will have a look at encryption matters, symmetric and asymmetric
keying, and certificates.

Chapter 3: OpenVPN discusses OpenVPN, its development, features, resources, and advantages
and disadvantages compared to other VPN solutions, especially IPsec.

Chapter 4: Installing OpenVPN covers installing OpenVPN on Windows, Mac, Linux, and
FreeBSD. It covers the installation on Linux from the source code and RPM packages. Installation
on SuSE and Debian is also covered in detail.

Preface

 2

Chapter 5: Configuring OpenVPN—The First Tunnel is where we will set up our first VPN tunnel
based on a pre-shared encryption key. This chapter also covers tunnels and file exchange between
Linux and Windows.

Chapter 6: Setting Up OpenVPN with X509 Certificates explains how to use OpenVPN's easy-rsa
tool to create and manage certificates for secure VPN servers.

Chapter 7: The Command openvpn and its Configuration File covers the syntax and options of
OpenVPN in detail, including many examples.

Chapter 8: Securing OpenVPN Tunnels and Servers introduces safe and secure configurations and
explains how to set up basic firewalls for a VPN Server, using iptables, Shorewall, Webmin, and
both the SuSE and the Windows firewall systems.

Chapter 9: Advanced Certificate Management, describes two very useful tools to manage
certificates and revocation lists: xca for Windows and TinyCA for Linux. This chapter also
explains installation and use of these tools.

Chapter 10: Advanced OpenVPN Configuration focuses on advanced OpenVPN configurations,
including tunneling through a proxy server, pushing routing commands to clients, pushing and
setting the default route through a tunnel, distributed compilation through VPN tunnels with
distcc, OpenVPN scripting, and much else.

Chapter 11: Troubleshooting and Monitoring is what you should refer if you need help when
something does not work. Here standard networking tools are covered that can be used for
scanning and testing the connectivity of a VPN server.

Appendix A: Internet Resources: Though the Internet changes rapidly, many of the links provided
have proven very helpful to me during the writing of this book.

What You Need for This Book
For learning VPN technologies, it may be helpful to have at least two or four PCs. Virtualization
tools like XEN or VMware are very helpful here; especially if you want to test with different
operating systems and switch between varying configurations easily. However, one PC is
completely enough to follow the course of this book.

Two separate networks (connected by the Internet) can provide a useful setup if you want to test
firewall and advanced OpenVPN setup.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can include other
contexts through the use of the include directive."

Preface

A block of code will be set as follows:
root=/usr/share/webmin
mimetypes=/etc/mime.types
port=10000
host=debian03.feilner-it.home
addtype_cgi=internal/cgi
realm=Webmin Server
logfile=/var/log/webmin/miniserv.log
pidfile=/var/run/webmin.pid
logtime=168
ssl=1

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items will be made bold:

root=/usr/share/webmin
mimetypes=/etc/mime.types
port=10000
host=debian03.feilner-it.home
addtype_cgi=internal/cgi
realm=Webmin Server
logfile=/var/log/webmin/miniserv.log
pidfile=/var/run/webmin.pid
logtime=168
ssl=1

Any command-line input and output is written as follows:
cd "C:\\Program Files\ OpenVPN\easy-rsa\"

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking the Next
button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book, what
you liked or may have disliked. Reader feedback is important for us to develop titles that you
really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making sure to
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

 3

Preface

 4

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in text or code—we would be grateful if
you would report this to us. By doing this you can save other readers from frustration, and help to
improve subsequent versions of this book. If you find any errata, report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the Submit Errata link, and
entering the details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some aspect of
the book, and we will do our best to address it.

1
VPN—Virtual Private Network

This chapter will start with networking solutions used in the past for connecting several branches
of a company. Technological advances like broadband Internet access brought about new
possibilities and new concepts for this issue, one of them being the Virtual Private Network
(VPN). In this chapter, you will learn what the term VPN means, how it evolved during the last
decade, why it is necessary to modern enterprises, and how typical VPNs work. Basic networking
concepts are necessary to understand the variety of VPN solutions discussed in this chapter.

Branches Connected by Dedicated Lines
In former times, information exchange between branches of a company was mainly done by mail,
telephone, and later by fax. But today there are four main challenges for modern companies:

• The general acceleration of business processes and the rising need for fast, flexible
information exchange between all branches of a company has made "old-fashioned"
mail and even fax services appear too slow for modern requirements.

• Technologies like Groupware, Customer Relationship Management (CRM), and
Enterprise Resource Planning (ERP) are used to ensure productive teamwork and
every employee is expected to cooperate.

• Almost every enterprise has several branches in different locations and often field
and home workers. All of these must be enabled to participate in the internal
information exchange without delays.

• All computer networks have to fulfill security standards to high levels to ensure data
integrity, authenticity, and stability.

These four factors have led to the need of sophisticated networking solutions between a company's
offices all over the world. With computer networks connecting all desktops within a single
location, the need for connections between the sites has become more and more urgent.

In the very beginning, you could only buy dedicated lines between your sites and these lines were
expensive, and thus only large companies could afford to connect their branches to enable world-
wide teamwork. To reach this goal, fast and expensive connections had to be installed in every
site, costing much more than normal enterprise Internet access.

VPN—Virtual Private Network

The concept behind this network design was based on a real network between the branches of the
company. A provider was needed to connect every location, and a real cable connection between
all branches was established. Like the telephone network, a single line connecting two partners
was used for communication.

Security for this line was achieved by providing a dedicated network—every connection between
branches had to be installed with a leased line. For a company with four branches (A, B, C, and
D), six dedicated lines would then become necessary:

 6

Furthermore, Remote Access Servers (RAS) were used for field or home workers who would
only connect temporarily to the company's network. These people had to use special dial-in
connections (with a modem or an ISDN line), and the company acted like an Internet provider. For
every remote worker a dial-in account had to be configured and field workers could only connect
over this line. The telephone company provided one dedicated line for every dial-up, and the
central branch had to make sure that enough telephone lines were always available.

By protecting the cables and the dial-in server, a real private network was installed at very high
costs. Privacy within the company's network spanning multiple branches was achieved by securing
the lines and providing services only to hard-wired connection points. Almost all security and
availability tasks were handed over to the service provider at very high costs. But by connecting
sites directly, a higher data transfer speed could be achieved than with "normal" Internet
connections at that time.

Until the middle of the 1990s, expensive dedicated lines and dial-in access servers were used to
ensure team work between different branches and field workers of large companies.

Broadband Internet Access and VPNs
In mid 1990s, the rise of the Internet and the increase of speed for cheap Internet connections
paved the way for new technologies. Many developers, administrators, and, last but not the least,
managers had discovered that there might be better solutions than spending several hundreds of
dollars, if not thousands of dollars, on dedicated and dial-up access lines.

Chapter 1

The idea was to use the Internet for communication between branches and at the same time ensure
safety and secrecy of the data transferred. In short: providing secure connections between
enterprise branches via low-cost lines using the Internet. This is a very basic description of what
VPNs are all about.

A VPN is:

• Virtual, because there is no real direct network connection between the two (or
more) communication partners, but only a virtual connection provided by VPN
Software, realized normally over public Internet connections.

• Private, because only the members of the company connected by the VPN Software
are allowed to read the data transferred.

With a VPN, your staff in Sydney can work with the London office as if both were in the same
location. The VPN Software provides a virtual network between those sites by using a low-cost
Internet connection. This network is only virtual because no real, dedicated network connection to
the partner is established.

A VPN can also be described as a set of logical connections secured by special software that
establishes privacy by safeguarding the connection endpoints. Today the Internet is the network
medium used, and privacy is achieved by modern cryptographic methods.

How Does a VPN Work?
Let's use an example to explain how VPNs work. The Virtual Entity Networks Inc. (VEN Inc.)
has two branches, London and Sydney. If the Australian branch in Sydney decides to contract a
supplier, then the London office might need to know that immediately. The main part of the IT
infrastructure is set up in London. In Sydney there are twenty people whose work depends on the
availability of the data hosted on London servers.

 7

VPN—Virtual Private Network

Both sites are equipped with a permanent Internet line. An Internet gateway router is set up to
provide Internet access for the staff. This router is configured to protect the local network of the
site from unauthorized access from the other side, which is the "evil" Internet. Such a router set up
to block special traffic can be called a firewall and must be found in every branch that is supposed
to take part in the VPN.

The VPN Software must be installed on this firewall (or a device or server protected by it). Many
modern firewall appliances from manufacturers like Cisco or BinTec include this feature, and
there is VPN Software for all hardware and software platforms.

In the next step, the VPN Software has to be configured to establish the connection to the other
side: e.g. the London VPN server has to accept connections from the Sydney server, and the
Sydney server must connect to London (or vice versa).

If this step is successfully completed, the company has a working Virtual Network. The two
branches are connected via the Internet and can work together like in a real network. Here, we
have a VPN without privacy, because any Internet router between London and Sydney can read
the data exchanged. A competitor gaining control over an Internet router could read all relevant
business data going through the virtual network.

So how do we make this Virtual Network private? The solution is encryption. The VPN traffic
between two branches is locked with special keys, and only computers or persons owning this key
can open this lock and look at the data sent.

 8

Chapter 1

All data sent from Sydney to London or from London to Sydney must be encrypted before and
decrypted after transmission. The encryption safeguards the data in the connection like the walls
of a tunnel protect the train from the mountain around it. This explains why Virtual Private
Networks are often simply known as tunnels or VPN tunnels, and the technology is often called
tunneling—even if there is no quantum mechanics or other magic involved.

The exact method of encryption and providing the keys to all parties involved makes one of the
main distinguishing factors between different VPN solutions.

A VPN connection normally is built between two Internet access routers equipped with a firewall
and VPN software. The software must be set up to connect to the VPN partner, the firewall must
be set up to allow access, and the data exchanged between VPN partners must be secured (by
encryption). The encryption key must be provided to all VPN partners, so that the data exchanged
can only be read by authorized VPN partners.

What are VPNs Used For?
In the earlier examples, we have discussed several possible scenarios for the use of VPN
technology. But one typical VPN solution must be added here: More and more enterprises offer
their customers or business partners a protected access to relevant data for their business relations,
like ordering formulas or stocking data. Thus, we have three typical scenarios for VPN solutions
in modern enterprises:

• An intranet spanning over several locations of a company
• A dial-up access for home or field workers with changing IPs
• An extranet for customers or business partners

Each of these typical scenarios requires special security considerations and setups. The external
home workers will need different access to servers in the company than the customers and
business partners. In fact, access for business partners and customers must be restricted severely.

Now that we have seen how a VPN can securely connect a company in different ways, we will
have a closer look at the way VPNs work. To understand the functionality, some basic network
concepts need to be understood.

All data exchange in computer networks is based on protocols. Protocols are like languages or
rituals that must be used between communication partners in networks. Without the correct use of
the correct protocol, communication fails.

 9

VPN—Virtual Private Network

 10

Networking Concepts—Protocols and Layers
There is a huge number of protocols involved in any action you take when you access the Internet or
a PC in your local network. Your Network Interface Card (NIC) will communicate with a hub, a
switch, or a router; your application will communicate with its pendant or a server on the other PC,
and many more protocol-based communication procedures are necessary to exchange data.

Because of this the Open Systems Interconnection (OSI) specification was created. Every
protocol used in today's networks can be classified by this scheme.

The OSI specification defines seven numbered layers of data exchange, which start at Layer 1 (the
physical layer) of the underlying network media (electrical, optical, or radio signals) and span up
to Layer 7 (the application layer), where applications on PCs communicate with each other.

The layers of the OSI model are:

1. Physical Layer: Sending and receiving through the hardware.
2. Data Link Layer: Direct communication between network devices within the

same medium.
3. Network Layer: Routing, addressing, error handling, etc.
4. Transport Layer: End-to-end error recovery and flow control.
5. Session Layer: Establishing connections and sessions between applications.
6. Presentation Layer: Translating between application data formats and network formats.
7. Application Layer: Application-specific protocols.

This set of layers is hierarchical and every layer is serving the layer above and the layer below. If
the protocols of the physical layer could communicate successfully, then the control is handed to
the next layer, the Data Link Layer. Only if all layers, 1 through 6, can communicate successfully,
can data exchange between applications (on Layer 7) be achieved.

In the Internet, however, a slightly different approach is used.

The Internet is mainly based on the Internet Protocol (IP).

The layers of the IP model are:

1. Link Layer: A concatenation of OSI Layers 1 and 2 (Physical and Data Link Layers).
2. Network Layer: Comprises the Network Layer of the OSI model.
3. Transport Layer: Comprises protocols like Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP), which are the basis for protocols of the
Application Layer.

4. Application Layer: Concatenation of OSI Layers 5 through 7 (Session, Presentation, and
Application Layers). The protocols in the Transport Layer are the basis for protocols of
the Application Layer (Layer 5 through Layer 7) like HTTP, FTP, or others.

A network packet consists of two parts: header and data. The header is a sort of label containing
metadata on sender, recipient, and administrative information for the transfer. On the networking
level of an Ethernet network, these packets are called frames. In the context of the Internet
Protocol these packets are called datagrams, Internet datagrams, IP datagrams, or simply packets.

Chapter 1

So what do VPNs do? VPN Software takes IP packets or Ethernet frames and wraps them into
another packet. This may sound complicated, but it is a very simple trick, as the following
examples will show:

Example 1: Sending a (not really) anonymous parcel

You want to send a parcel to a friend who lives in a community with strange people, whom you don't
trust. Your parcel has the address label with sender and recipient data (like an Internet packet). If you
do not want the commune to know that you sent your friend a parcel, but at the same time you want
your friend to realize this before he opens it, what would you do? Just wrap the whole parcel in
another packet with a different address label (e.g. without your sender information) and no one in the
commune will know that this parcel is from you. But your friend will unpack the first layer and see a
parcel still unpacked, and with an address label from you.

Example 2: Sending a locked parcel

OK, now let's distrust the commune still more. Somebody might want to open the parcel in order
to find out what's inside. To prevent this, you will use a locked case. There are only two keys to
the lock, one for you and one for your friend. Only you and your friend can unlock the case and
look inside the packet.

VPN Software uses a combination of the earlier two examples:

• Whole Network packets (frames, datagrams) consisting of header and data are
wrapped into new packets.

• All data including metadata like recipient and sender are encrypted.
• The new packets are labeled with new headers containing meta-information about

the VPN and are addressed to the VPN partner.

All VPN Software systems differ only in the special way of wrapping and locking the data.

Protocols define the method of data exchange in computer networks. The OSI model
classifies protocols in seven layers spanning from network layers to application layers. IP
Packets consist of headers with meta-information and data. VPNs wrap and encrypt whole
network packets in new network packets, adding new headers including address data.

Tunneling and Overhead
We have learned already that VPN technology often is called tunneling, because the data in a
VPN connection is protected from the Internet as the walls of the a road or rail tunnel protect
the traffic in the tunnel from the masses of stone of the mountain above. Let's now have a closer
look at how VPN Software does this:

 11

VPN—Virtual Private Network

The VPN software in the locations A and B encrypts (lock) and decrypts (unlock) the data and
sends it through the tunnel. Like cars or trains in a tunnel, the data cannot go anywhere else but the
other tunnel endpoint.

The following are put together and wrapped into one new package:

• Tunnel information (like the address of the other endpoint)
• Encryption data and methods
• The original IP packet (or network frame)

The new package is then sent to the other tunnel endpoint. The payload of this package now holds
the complete IP packet (or network frame), but in encrypted form and thus not readable for anyone
not possessing the right key. The new header of the packet simply contains the addresses of sender
and recipient and other metadata necessary for and provided by the VPN software used.

Perhaps you have noticed that the amount of data sent grows during the process of "wrapping".
Depending on the VPN software used, this so called overhead can become a very important factor.
The overhead is the difference between net data sent to the tunnel software and gross data sent
through the tunnel by the VPN software. If a file of 1 MB is sent from user A to user B, and this file
causes 1.5 MB traffic in the tunnel, then the overhead would be 50%, a very high level. (Please note
that every protocol used causes overhead, so not all of that 50% might be the fault of the VPN
solution.) The overhead caused by the VPN Software depends on the amount of organizational data
and the encryption used. Whereas the first depends only on the VPN Software used, the latter is
simply a matter of choice between security and speed. In other words, the better the encryption you
use, the more overhead you will produce. Speed versus security is your choice.

 12

Chapter 1

VPN Concepts—Overview
During the last ten years, many different VPN concepts have evolved. You may have noticed that I
always added "network frames" in brackets when I spoke of tunneling IP packets. This became
necessary, because in principle, tunneling can be done on almost all layers of the OSI model.

A Proposed Standard for Tunneling
The General Routing Encapsulation (GRE) provides a standard for tunneling data, which was
defined in 1994 in Request for Comments (RFCs) 1701 and 1702. Perhaps, because this
definition is not a protocol definition, but more or less a standard proposal on how to tunnel data,
this implementation has found its way into many devices and become the basis for other protocols.

The concept of GRE is pretty simple. A protocol header and a delivery header are added to the
original packet and its payload is encapsulated in the new packet. No encryption is done. The
advantage of this model are almost obvious—the simplicity offers many possibilities, the
transparency enables administrators and routers to look inside the packets and pass decisions
based on the type of payload sent. By doing so, special applications can be privileged.

There are many implementations for GRE tunneling software under Linux; only kernel support is
necessary, which is fulfilled by most modern distributions.

Protocols Implemented on OSI Layer 2
Encapsulating packages on the OSI Layer 2 has a significant advantage: the tunnel is able to
transfer non-IP protocols. IP is a standard used widely in the Internet and in Ethernet networks.
However, there are different standards too. Netware Systems, for example, uses the Internetwork
Packet Exchange (IPX) protocol to communicate. VPN technologies residing in Layer 2 can
theoretically tunnel any kind of packet. In most cases, a virtual Point-to-Point Protocol (PPP)
device is established which is used to connect to the other tunnel endpoint. (A PPP device is
normally used for modem or DSL connections.)

Four well-known Layer 2 VPN technologies, which are defined by RFCs, use encryption methods
and provide user authentication:

• The Point to Point Tunneling Protocol (PPTP), which was developed with the help
of Microsoft, is an expansion of the PPP and is integrated in all newer Microsoft
Operating Systems. PPTP uses GRE for encapsulation and can tunnel IP, IPX, and
other packages over the Internet. The main disadvantage is the restriction that there
can only be one tunnel at a time between communication partners.

• The Layer 2 Forwarding (L2F) was developed almost at the same time by
companies like Cisco and others and offers more possibilities than PPTP, especially
regarding tunneling of network frames and multiple simultaneous tunnels.

• The Layer 2 Tunneling Protocol (L2TP) is accepted as an industry standard and is
being used widely by Cisco and other manufacturers. Its success is based on the fact
that it combines the advantages of L2F and PPTP without suffering from their

 13

VPN—Virtual Private Network

 14

disadvantages. Even though it provides no own security mechanisms, it can be combined
with technologies offering such mechanisms like IPsec (see the section Protocols
Implemented on OSI Layer 3).

• The Layer 2 Security Protocol (L2Sec) was developed to provide a solution to the
security flaws of IPsec. Even though its overhead is rather big, the security
mechanisms used are secure, because mainly SSL/TLS is used.

Other distinguishing factors between the mentioned systems and protocols are:

• Availability of authentication mechanisms
• Support for advanced networking features like Network Address Translation (NAT)
• Dynamic allocation of IP addresses for tunnel partners in dial-up mode
• Support for Public Key Infrastructures (PKI)

These features will be discussed in later chapters.

Protocols Implemented on OSI Layer 3
IPsec is probably the most wide-spread tunneling technology. In fact, it is rather a set of protocols,
standards, and mechanisms than a single technology. The wide range of definitions, specifications,
and protocols are already the main disadvantages about IPsec. It is a complex technology with
many different implementations and many security loopholes. IPsec was a compromise accepted
by a commission and therefore is something like a least common denominator agreed upon. This
means that IPsec can be used in many different setups and environments, ensuring compatibility,
but almost no aspect of it offers the best possible solution.

IPsec was developed as an Internet Security Standard on Layer 3, and has been standardized by
the Internet Engineering Task Force (IETF) since 1995. IPsec can be used to encapsulate any
traffic of application layers, but no traffic of lower network layers. Neither network frames, IPX
packets, nor broadcast messages can be transferred, and network address translation is only
possible with restrictions.

Nevertheless, IPsec can use a variety of encryption mechanisms, authentication protocols, and
other security associations. IPsec software exists for almost every platform, and compatibility with
the implementation of other manufacturers is secured in most cases even though there are
significant problems resulting from proprietary extensions.

The main advantage of IPsec is the fact that it is being used everywhere. An administrator can
choose from an abundant number of hardware devices and software implementations to provide
his or her networks with a secure tunnel.

Basically there are two relevant methods that IPsec uses:

• Tunnel Mode: The tunnel mode works like the examples listed above; the whole IP
packets are encapsulated in a new packet and sent to the other tunnel endpoint, where the
VPN software unpacks them and forwards them to the recipient. In this way the IP
addresses of sender and recipient, and all other metadata are protected as well.

Chapter 1

Transport Mode: In transport mode, only the payload of the data section is encrypted
and encapsulated. By doing so, the overhead is significantly smaller than in tunnel mode,
but an attacker can easily read the metadata and find out who is communicating with
whom. However, the data is encrypted and therefore protected, which makes IPsec a real
"private" VPN solution.

•

IPsec's security model is probably the most complex of all existing VPN solutions and will be
discussed in brief in the next chapter.

Protocols Implemented on OSI Layer 4
It is also possible to establish VPN tunnels only on the application layer. Secure Sockets Layer
(SSL) and Transport Layer Security TLS () solutions follow this approach. The user can access
the VPN network of a company through a browser connection between his or her client and the
VPN server in the enterprise. A connection is simply started by logging into an HTTPS-secured
website with a browser. Meanwhile, there are several promising products available, like SSL-
Explorer from http://3sp.com/showSslExplorer.do, and products like these offer great
flexibility combined with strong security and easy setup. Using the secure connection the browser
offers, users can connect network drives and access services in the remote network. Security is
achieved by encrypting traffic using SSL/TLS mechanisms, which have proven to be very reliable
and are permanently improved and tested.

OpenVPN—An SSL/TLS-Based Solution
OpenVPN is a newer and an outstanding VPN solution. It implements Layer 2 or Layer 3
connections, uses the industry standard SSL/TLS for encryption, and combines almost all features
of the mentioned VPN solutions. Its main disadvantage is the fact that there are still few hardware
manufacturers integrating it in their solutions.

Summary
In this chapter, you have learned about techniques that have been and are used in companies that
have computer networks spanning over several branches. You have learned network basics like
protocols, networking layers, the OSI reference model, and which VPN solutions work on which
layer. You have read what tunneling is, how it works, and how different VPN solutions implement it.

 15

2
VPN Security

In this chapter, we will discuss goals and techniques concerning VPN security. These two terms
are linked together very closely. Without security, a VPN is not private anymore.

Therefore, we will first have a look at basic security issues and guiding measures to be taken in a
company. Information on symmetric and asymmetric keying methods, key exchange techniques,
and the problem of security versus simplicity pave the way for SSL/TLS security and a closer look
at SSL certificates. After having read this chapter, you will be prepared to understand the
underlying security concerns of OpenVPN (and any other VPN solution).

VPN Security
IT security and hence also VPN security is best described by three goals that have to be attained:

• Privacy (Confidentiality): The data transferred should only be available to
the authorized.

• Reliability (Integrity): The data transferred must not be changed between sender
and receiver.

• Availability: The data transferred must be available when needed.

All of these goals have to be achieved by using reliable software, hardware, Internet service
providers, and security policies. A security policy defines responsibilities, standard procedures, and
disaster management and recovery scenarios to be prepared for the worst. Understanding maximum
damage and the costs of the worst possible catastrophe can give an idea of how much effort has to be
spent in security issues. Security policies should also define organizational questions like:

• Who has the key to the server room when the administrator is on holiday?
• Who is allowed to bring a private laptop?
• How are the cables protected?
• How is a wireless LAN (WLAN) protected?

However, discussing all these questions would go far beyond the scope of this book. There are a
number of excellent documents online where you can read more about basic security issues that
should also be discussed in your company. I only want to mention two of them here: the IT

VPN Security

Baseline Protection as published by the German BSI and the IT-Sec Handbook containing concise
security hints and are often quoted as the reference material for all security issues in modern
enterprises. You can find them here:
http://www.bsi.bund.de/english/gshb/index.htm

http://www.cccure.org/Documents/HISM/ewtoc.html

VPN security itself is achieved by protecting the traffic with modern, strong encryption methods,
secure authentication techniques, and firewalls controlling the traffic into and from the tunnels.
And simply encrypting the traffic is not enough; there are huge differences in security depending
on the methods used. The following sections will deal with issues concerning confidentiality and
integrity, whereas the approach to ensure availability is discussed in the next chapter.

Privacy—Encrypting the Traffic
Often passwords or encryption keys are used to encrypt data. If both sides use the same key to
encrypt and decrypt data, this is called symmetric encryption. The encryption key has to be put
on all machines that are supposed to take part in the VPN connection.

Symmetric Encryption and Pre-Shared Keys
Anybody who has this key can decrypt the traffic. If an attacker gets hold of this key, he or she can
decrypt all traffic and compromise all systems taking part in the VPN, until all systems are
supplied with another key. Furthermore, such a static, pre-shared key can be guessed, deciphered,
or hacked by brute-force attacks. It is merely a matter of time for an attacker to find out the key
and to read, or even worse, change the data.

Therefore, VPN software like IPsec changes keys in defined intervals. Every key is only valid for
a certain period of time, called key lifetime. A good combination of key lifetime and key length
ensures that an attacker cannot decrypt the key while it is valid. If the VPN Software is changing
keys, then the attacker must be quick, or the acquired key is worthless.

 18

Chapter 2

Nevertheless, if the VPN software is permanently changing keys, a method of key exchange between
the communication partners has to be used so that both sides use the same encryption key at the same
time. This key exchange has to be secured again, following the same principles mentioned earlier.
During the last decade many key exchange methods have been invented, some very sophisticated,
and lots of them have proven insecure in the meantime. Basically, this key exchange adds a layer of
complexity to the VPN software, which is prone to failure or being compromised.

IPsec, the most frequently used VPN technology brings its own protocol for exchanging the
encryption keys. This protocol is called Internet Key Exchange (IKE) Protocol and has been
under development since the mid-nineties and is still not finished. Many discussions about the
security of this protocol can be found on the Internet and even though IKE seems to have some
security issues, it is used (with IPsec) in many companies.

Reliability and Authentication
man-in-the-middleAnother danger are so-called attacks, also know as eavesdropping. In this

scenario, a hacker intercepts all data traffic between sender and receiver, copies it and forwards it to
its true destination. Neither sender nor receiver would notice that the data is being intercepted. The
man-in-the-middle can store, copy, analyze, and perhaps even modify the captured traffic. This is
possible if the attacker can intercept and decrypt the keys while they are being used for encryption.

The Problem of Complexity in Classic VPNs
With classical VPNs that use symmetric keying, there are several layers of authentication,
exchange of encryption keys, and encryption/decryption. The following are the first three steps of
VPNs with symmetric encryption:

1. The partners have to authenticate each other.
2. They have to agree on the encryption methods.
3. Then they have to agree on the key exchange methods used.

 19

VPN Security

This is why VPN technology is often known as complex and difficult. The last paragraphs have
described more or less the basic way in which many modern VPN solutions work. In a nutshell,
the different approaches to keying, key exchange, and authentication of VPN partners make the
main part of the differences between the VPN Solutions.

Asymmetric Encryption with SSL/TLS
SSL/TLS uses one of the best encryption technologies called asymmetric encryption to ensure
the identity of the VPN partner. Both encryption partners own two keys each: one public and the
other, private. The public key is handed over to the communication partners, who encrypt the data
with it. Because of the selected mathematical algorithm used to create the public/private key pair,
only the recipient's private key can decrypt data encoded by his public key.

The private keys have to be kept secret and the public keys have to be exchanged.

In the example above, a text message is encrypted in Sydney with the public key of London. The
scrambled code is sent to London, where it can be deciphered using London's private key. This
can be done vice versa for data from London to Sydney, which is encrypted by the Sydney public
key in London and can only be decrypted by the Sydney private key in Sydney.

A similar procedure can also be used for authentication purposes: London sends a large random
number to Sydney, where this number is encoded with the private key and sent back. In London,
the Sydney public key can decode the number. If the numbers sent and decrypted match, then the
sender must be the holder of the Sydney private key. This is called digital signature.

SSL/TLS Security
The SSL/TLS library can be used for authentication and encryption purposes. This library is part
of the OpenSSL Software that is installed on any modern operating system. If available,
SSL/TLS certificate-based authentication and encryption should always be first choice for any
tunnel you create.

 20

Chapter 2

SSL, also known as TLS, is a protocol originally designed by Netscape Communications
Corporation to ensure easy-to-use data integrity and authenticity for the fast growing Internet in the
1990s. Everybody using a modern browser can participate in encrypted communication. SSL/TLS is
an outstanding technology that is being used all over the Web for banking, e-commerce, or any other
application where privacy and security are needed. It is being steadily controlled, debugged, tested,
and improved by both open source and proprietary developers and many corporations.

As SSL/TLS resides beneath application protocols, it can be used for almost any application.
Every surfer has noticed URLs beginning with https:// instead of http://, which signifies an
encrypted connection. Point your browser to a website encrypted with https://, like
https://packtpub.com.

Whenever you point your browser to such a page for the first time, you have to validate an SSL
certificate. Usually, your browser does this for you when the certificate is trustworthy. The
screenshot above shows Mozilla's pop-up window, which you receive when there are errors in
validating the certificate. Usually, this is just one of these OK buttons most people press during
surfing without further attention.

Understanding SSL/TLS Certificates
By accepting a certificate (pressing OK), the browser is told to trust the issuer (the website that
provided the certificate) and you agree to use this certificate for encryption of the communication
with this server. When you're using Mozilla, Firefox, or Konqueror, you are prompted if you want
to accept the certificate. Click on the button View Certificate, and you will see a screen like that
shown in screenshot overleaf in the section on Trusted Certificates.

Trusted Certificates
In the following screenshot, you can see the information contained in the SSL certificate. The
information in the fields Issued To and Issued By is probably the most important. If you find a
trustworthy organization here, it should be safe to trust this certificate. Trustworthy means one
of several organizations who sign certificates, thereby guaranteeing the identity of the owner of
the certificate.

 21

https://packtpub.com/

VPN Security

With a signed certificate the owner of the certificate can prove that he or she is who he or she
claims to be, to anybody who trusts the certificate authority.

Every TLS-enabled browser contains a list of trustworthy organizations that are entitled to sign
certificates and the keys necessary to confirm this.

Click the button and have another look at the first window—Close Security Error. It is in fact a
warning. The certificate was originally issued for www.packtpub.com and not for packtpub.com,
from where it was received, and the Mozilla SSL client simply warns about this fact.
www.packtpub.com is a subdomain of packtpub.com, so this difference should not be crucial.
However, if you receive a warning that the certificate for domain A was originally issued for
domain B, you should become suspicious.

 22

http://www.packtpub.com/
http://www.packtpub.com/

Chapter 2

This so-called third-party-authentication scheme is pretty common today. The ID cards and passports
we use today work the same way—the government of the state you live in guarantees that you are who
you claim to be. This information is only valid for a certain time and could be traced back to the issuer.
Almost every other person, company, or organization relies on this information. These principles are
also implemented in many modern authentication mechanisms like Kerberos or SSL/TLS.

Self-Signed Certificates
It is also possible to use certificates that are not signed by authorities mentioned above, but by a
local Certificate Authority (CA).

In real life, if a good friend introduces us to a reliable friend of his, we tend to trust him too
simply because of the recommendation. But we would not trust somebody we do not know. If
you point Mozilla to a site with a certificate that is signed only by a local CA, you will receive
the following warning:

This warning means: "Watch out, I do not know the issuer of this certificate, nor do I know
someone who guarantees the identity of the issuer."

Every SSL/TLS client gives you a warning when a client wants to establish an encrypted
connection with an unsigned private certificate. Mozilla opens the Window Website Certified by
an Unknown Authority.

 23

VPN Security

Click on the button to view the details of a self-signed certificate in Mozilla: Examine Certificate

In this screenshot you see a certificate that was built to secure the Webmin administration
interface on a local system. Mozilla reports: Could not verify this certificate because the issuer is
not trusted. Where does this certificate come from?

The solution is simple: The OpenSSL software package, which contains the encryption
software, also provides programs to create certificates and to sign them. Such certificates are
called self-signed certificates, and can only be considered trustworthy when the issuer or the
CA is known to and trusted by the client. Later in this book, you will learn how to create, sign,
and manage such certificates.

Self-signed certificates are often used for testing purposes or in local networks because registering
(signing) certificates at certificate authorities is expensive and not necessary in many scenarios.
However, the security policy of a company should contain definitions about the use of signed and
unsigned certificates on servers.

 24

Chapter 2

SSL/TLS Certificates and VPNs
SSL/TLS certificates work exactly the same way with VPNs—a certificate authority is defined or
created and all valid certificates issued by this authority are accepted for the VPN. Every client
must have a valid certificate issued by this CA and is therefore allowed to establish a connection
to the VPN.

A Certificate Revocation List CRL () can be used to revoke certificates that belong to clients that
must not be allowed to connect to the VPN any longer. This can be done without configuration on
any client, simply by creating an appropriate revocation list on the server. This is very useful when
a laptop is stolen or compromised.

An organization using a pre-shared key must put this key on every system that connects to the
VPN server. The key must be changed on all systems if one single system or key is lost. But if you
are using certificates with revocation lists, you only have to put the certificate of the stolen laptop
on the server's CRL. When this client tries to connect to the server, access will be denied. There is
no need for interaction on with any client.

Connections are refused if:

• No certificate is presented
• A certificate from a wrong CA is presented
• A revoked certificate is presented

Such certificates can be used for many purposes. HTTPS and OpenVPN are only two applications of
an abundant variety of possibilities. Other VPN Systems (like IPsec), web servers, mail servers, and
almost every other server application can use these certificates to authenticate clients. If you have
understood and applied this technology correctly, you have achieved a very high degree of security.

Summary
In this chapter, you have learned basic security concepts necessary for VPN technologies. There are
several websites with excellent material on IT security issues. You have received an overview of
basic security and encryption issues and know why complexity is always an enemy of security. With
symmetric keying, both encryption partners use the same key, but when asymmetric keying is used,
the encryption key is different from the one used for decrypting the data. The SSL/TLS library uses
asymmetric keying and provides certificates used by millions of websites. The certificates can be
signed by official authorities like our passports or ID cards, or self-signed by a local authority. This
is called third-party authentication because a certificate signed by third party is trusted.

 25

3
OpenVPN

In this chapter we will discuss the nature of OpenVPN. We will start with its features and its
release history, followed by its basic networking concepts, and a first brief look at the
configuration. At the end of this chapter, OpenVPN is compared to IPsec, the quasi-standard in
VPN technology.

Advantages of OpenVPN
With OpenVPN, a new generation VPN entered the scene. While other VPN solutions often use
proprietary or non-standard mechanisms, OpenVPN has a modular concept both for underlying
security and networking. OpenVPN uses the secure, stable, and lauded SSL/TLS mechanisms for
authentication and encryption, and does not suffer from the complexity that characterizes other
VPN implementations like market leader IPsec. At the same time, it offers possibilities that go
beyond every other VPN implementation's scope:

• Layer 2 and Layer 3 VPN: OpenVPN offers two basic modes, which run either as
Layer 2 or Layer 3 VPN. Thus OpenVPN tunnels can also transport Ethernet Frames,
IPX packets, and Windows Network Browsing packets (NETBIOS), all of which are
problems in most other VPN solutions.

• Protecting field workers with the internal firewall: A field worker connected to
the central branch of his or her company with a VPN tunnel can change the network
setup on his or her laptop, so that all of his or her network traffic is sent through the
tunnel. Once OpenVPN has established a tunnel, the central firewall in the
company's central branch can protect the laptop, even though it is not a local
machine. Only one network port must be opened to the local (e.g. customers')
network by the field worker. The employee is protected by the central firewall
whenever he or she is connected to the VPN.

• OpenVPN connections can be tunneled through almost every firewall: If you
have Internet access and if you can access HTTPS websites, OpenVPN tunnels
should work.

• Proxy support and configurations: OpenVPN has proxy support and can be
configured to run as a TCP or UDP service, and as server or client. As a server,
OpenVPN simply waits until a client requests a connection, whereas as a client, it
tries to establish a connection according to its configuration.

OpenVPN

 28

• Only one Port in the firewall must be opened to allow incoming connections:
Since OpenVPN 2.0, the special server mode allows multiple incoming connections
on the same TCP or UDP port, while still using different configurations for every
single connection.

• Virtual Interfaces allow very specific networking and firewall rules: All rules,
restrictions, forwarding mechanisms, and concepts like NAT can be used with
OpenVPN tunnels.

• High flexibility with extensive scripting possibilities: OpenVPN offers numerous
points during connection set up to start individual scripts. These scripts can be used
for a great variety of purposes from authentication to failover and more.

• Transparent, high-performance support for dynamic IPs: By using OpenVPN,
there is no need anymore to use static IPs on either side of the tunnel. Both tunnel
endpoints can have cheap DSL access with dynamic IPs and the users will rarely
notice a change of IP on either side. Both Windows Terminal server sessions and
Secure Shell (SSH) sessions will only seem to hang for some seconds, but will not
terminate and will carry on with the action requested after a short pause.

• No problems with NAT: Both OpenVPN server and clients can be within a network
using only private IP addresses. Every firewall can be used to send the tunnel traffic
to the other tunnel endpoint.

• Simple Installation on any platform: Both installation and use are incredibly
simple. Especially, if you have tried to set up IPsec connections with different
implementations, you will find OpenVPN appealing.

• Modular Design: The modular design with a high degree of simplicity both in
security and networking is outstanding. No other VPN solution can offer the same
range of possibilities at this level of security.

History of OpenVPN
According to an interview on http://linuxsecurity.com published in 2003, James Yonan was
traveling in Central Asia in days prior to 9/11, 2001 and connecting to his office over Asian or
Russian Internet Providers.

The fact that these connections were established over servers in countries with very doubtable
security situations made him more and more aware of and concerned about security issues. His
research brought the insight that there were two main streams in VPN technology, one promoting
security and the other, usability. None of the solutions available at that time offered an ideal blend of
both objectives. IPsec and all of its implementations were difficult to set up, but offered acceptable
security. But its complex structure made it vulnerable to attacks, bugs, and security flaws. Therefore,
the networking approach Yonan found in some of the usability camp's solutions seemed to make
more sense to him, leading him to a modular networking model using the TUN/TAP virtual
networking devices provided by the Linux kernel.

Chapter 3

"After some study of the open source VPN field, my conclusion was that the "usability
first" camp had the right ideas about networking and inter-network tunneling, and the
SSH, SSL/TLS, and IPSec camps had the appropriate level of seriousness toward the deep
crypto issues. This was the basic conceptual starting point for my work on OpenVPN."

James Yonan in a linuxsecurity.com interview, November 10, 2003.
(http://www.linuxsecurity.com/content/view/117363/49/)

Choosing the TUN/TAP devices as networking model immediately offered flexibility that other
VPN solutions could not offer. While other SSL/TLS-based VPN solutions needed a browser to
establish connections, OpenVPN would prepare almost real (but still virtual) network devices, on
which almost all networking activities can be done.

Yonan then chose the name OpenVPN with respect to the libraries and programs of the OpenSSL
project and because of the clear message this is open source and free software.

OpenVPN Version 1
OpenVPN entered the scene of VPN solutions only on May 13, 2001 with an initial release that
could barely tunnel IP packets over UDP and only encrypt with Blowfish cipher and SHA HMAC
signatures (rather secure encryption and signing methods). This version was already numbered
0.90—which seems ambitious, since only one version (0.91) followed in 2001, offering extended
encryption support. For SSL/TLS support, users would have to wait almost one year after the first
release. Version 1.0 was released in March 2002 and provided SSL/TLS-based authentication and
key exchange. This version was also the first to contain documentation in form of a manpage.

Then, OpenVPN development picked up speed. Only five days later, version 1.0.2 was released,
which was the first version with adaptations for Redhat Package Manager (RPM)-based
systems. From this version on, releases were published almost regularly every four to eight weeks.

The following table gives an overview of the releases and lists the dates and versions when certain
selected features were added to the 1.x version of OpenVPN. More details can be found in the
Changelog sections of the OpenVPN website at http://openvpn.net/changelog.html and
release notes at http://openvpn.net/relnotes.html.

 29

OpenVPN

 30

Date Version Important features/changes

2001-5-13 0.90 The initial release, with only a few functions like IP over UDP, and only one
encryption mechanism

2001-12-26 0.91 More encryption mechanisms added

2002-3-23 1.0 TLS-based authentication and key exchange added
First manual page

2002-3-28 1.0.2 Bugfixes and improvements, especially for rpm-based systems like Redhat

2002-4-9 1.1.0 Extended support for TLS/SSL
Traffic shaping added
First OpenBSD port
Extended replay protection makes OpenVPN more secure
Further improvement of Documentation (manpage)

2002-4-22 1.1.1 Options for automatic configuration of a OpenVPN network
Inactivity control features

2002-5-22 1.2.0 Configuration file support added
SSL/TLS as background process—longer keys are possible
Various ports added/improved (Solaris, OpenBSD, Mac OSX, x64)
Website improved, including "howto"
Installation without automake possible

2002-6-12 1.2.1 Binary RPM files for installation on Redhat-based systems provided
Intensive improvements on signal handling and key management on restart
Support for dynamical changes in incoming packages (like dynamic IPs)
Added support for identity downgrade after installation—OpenVPN can be run
as non-privileged user

2002-7-10 1.3.0

2002-7-10 1.3.1
"Housekeeping Releases": Bugfixes, minor improvements, and new features;
works now with OpenSSL 0.9.7 Beta 2

2002-10-23 1.3.2 NetBSD port
Support for inetd/xinetd instantiation under Linux
Simple building of SSL/TLS certificates added (easy-rsa script)
Support for IPv6 over TUN added

2003-5-07 1.4.0 Improvement of replay protection (security)
Numerous bugfixes, improvements, and additions

2003-5-15 1.4.1 Improved support for kernel 2.4

2003-7-15 1.4.2 First beginnings of Windows port (but still missing Windows kernel driver)
Gentoo init script

2003-8-4 1.4.3 Bugfix release

Chapter 3

Date Version Important features/changes

2003-11-20 1.5.0
(and 14
beta
versions
before
that)

Certificate revocation lists
TCP support
Port to Windows 2000 and XP, including Win32 installer
Increased sanity checks in configuration parameters
Proxy support added
Extended routing functions (like redirect gateway)
Improved TLS support, extended key and cipher features

2004-5-9 1.6.0
(including
4 release
candidates
and 7 beta
versions)

SOCKS proxy support
Various improvements on Windows networking behavior—Dynamic Host
Configuration Protocol DHCP ()
Various bugfixes

OpenVPN Version 2
Parallel to the improvement and development of OpenVPN version 1, the test bed for OpenVPN
version 2 was made in November 2003, and in February 2004, version 2.0-test3 initially prepared
the goal of a multi-client server for OpenVPN. This multi-client server is one of the most
outstanding features of OpenVPN today; several clients can connect to the VPN server on the
same port. On February 22, 2004, the two development branches 1.6-beta7 and 2.0-test3 were
merged and further development was continued in version 2's branch.

There were fewer than 29 versions labeled as "test" versions, 20 beta versions, and 21 release
candidates, until on April 17, 2005, OpenVPN version 2.0 could be released. This was only
possible because of the great number of developers contributing to the project, fixing bugs, and
improving performance and stability permanently.

The following list will give a brief overview of the new features added to OpenVPN version 2:

• Multi-client support: OpenVPN offers a special connection mode, where TLS-
authenticated clients (that are not blacklisted on the CRL) are provided in DHCP-
style with IPs and networking (tunnel) data. This way, several tunnels (up to 128)
can communicate over the same TCP or UDP port. Obviously, a mode control switch
for activating server mode became necessary.

• Push/pull options: The Network setup of clients can be controlled by the server.
After successful setup of a tunnel, the server can tell the client (both Windows and
Linux) to use a different network setup instantaneously.

• A management interface (Telnet) is added.
• The Windows driver and software have been improved widely.

 31

OpenVPN

Networking with OpenVPN
The modular structure of OpenVPN can not only be found in its security model, but also in the
networking scheme. James Yonan chose the Universal TUN/TAP driver for the networking layer
of OpenVPN.

The TUN/TAP driver is an open-source project that is included in all modern Linux/UNIX
distributions as well as Windows and Mac OS X. Like SSL/TLS it is used in many projects, and
therefore it is steadily being improved and new features are being added. Using the TUN/TAP
devices takes away a lot of complexity from OpenVPN's structure. Its simple structure brings
increased security compared to other VPN solutions. Complexity is always the main enemy of
security. For example, IPsec has a complex structure with complex modifications in the kernel and
the IP stack, thereby creating many possible security loopholes.

The Universal TUN/TAP driver was developed to provide Linux kernel support for tunneling IP
traffic. It is a virtual network interface, which appears as authentic to all applications and users;
only the name tunX or tapX distinguishes it from other devices. Every application that is capable
of using a network interface can use the tunnel interface. Every technology you are running in
your network can be run on a TUN or TAP interface too.

This driver is one of the main factors that make OpenVPN so easy to understand, easy to
configure, and at the same time so secure.

The following figure depicts OpenVPN using standard interfaces:

A TUN device can be used like a virtual point-to-point interface, like a modem or DSL link. This
is called routed mode, because routes are set up to the VPN partner.

A TAP device, however, can be used like a virtual Ethernet adapter. This enables the daemon
listening on the interface to capture Ethernet frames, which is not possible with TUN devices. This
mode is called bridging mode because the networks are connected as if over a hardware bridge.

Applications can read/write to this interface; software (the tunnel driver) will take all data and use
the cryptographic libraries of SSL/TLS to encrypt them. The data is packaged and sent to the other
end of the tunnel. This packaging is done with standardized UDP or optional TCP packets. UDP
should be first choice, but TCP can be helpful in some cases. You are almost completely free to
choose the configuration parameters like protocol or port numbers, as long as both tunnel ends
agree on the same figures.

 32

Chapter 3

OpenVPN listens on TUN/TAP devices, takes the traffic, encrypts it, and sends it to the
other VPN partner, where another OpenVPN process receives the data, decrypts it, and
hands it over to the virtual network device, where the application might already be
waiting for the data.

As far as I know, there is no other VPN Software that enables VPN partners to transmit. This
concept offers overwhelming possibilities:

• Broadcasts needed for browsing Windows networks or for LAN Games
• Non-IP packets like IPX and almost anything possible in your LAN sent over the

VPN to the other side

And since OpenVPN uses standard network packets, NAT is no problem either. A host in the local
net in Sydney with a local IP can start a tunnel to another host in the local net in London; which
also is equipped with a local IP only.

But there's more. Because the network interface is standardized Linux network interface (either
TUN or TAP), anything possible on an Ethernet NIC can be done on VPN Tunnels:

• Firewalls can restrict and control the traffic.
• Traffic shaping is not only possible, but it is also a feature that OpenVPN brings with it.

Also, if you want to use DSL lines with frequent reconnects and dynamically assigned IPs,
OpenVPN will be your first choice. The reconnect is much faster than that of any other VPN
software we have tested; a Windows terminal server or SSH session does not terminate while one
of the VPN partners changes its IP; the session just freezes for some seconds and then you can
continue. Can your VPN accomplish that?

OpenVPN and Firewalls
OpenVPN works perfectly with firewalls. There are a few VPN solutions that can claim to have a
similar firewall support, but none can offer the same level of security.

What is a firewall? There is a famous and simple definition: A firewall is a router that does not
route. If you consider this not very helpful, here is a more refined definition:

A firewall is a router that routes only selected Internet data. Firewall rules define how to handle
specific data and traffic.

Firewalls can be devices or software on PCs, servers, or on other devices. A firewall takes care of
the data received and has a closer look on it. Modern firewalls are so-called packet filtering, stateful
inspection firewalls. Depending on the OSI layer it is operating in, the firewall can pass decisions
based on the data found in the headers of the packets or application data. Packet filtering firewalls
usually operate by reading the IP data header; stateful inspection is a mechanism to remember
connection states. In this way, internal networks can be protected from external networks, and while
Internet connections initiated from the inside can be allowed, all unwanted, unauthorized connections
from outside can be rejected. At the same time, incoming data requested by a member of the local net
is passed through (because the firewall remembers the state of the request).

 33

OpenVPN

 34

Under Linux, most firewalls are based on the program iptables. This is a user-space interface to the
Linux kernel's netfilter firewall functionality, and offers everything modern firewalls should.
Probably the best way to protect your LAN is by writing a set of iptables rules with a shell script.
However, the usability of such a script is not perfect. Most administrators want a Graphical User
Interface (GUI) for firewall control, and all hardware firewalls offer this. An outstanding project
for this purpose and Linux (iptables) firewalls is the Shorewall (Shoreline Firewall) project. It
integrates into the Webmin suite—a web-based front end to administer Linux systems from a
browser. The Shorewall project has written a guideline about integration of OpenVPN tunnels into
Shorewall and more at http://www.shorewall.net/OPENVPN.html.

IPCop is a promising standalone, easy-to-configure Linux firewall system also equipped with a
professional GUI. Standardized installation, simple structures, and modular add-ons make this a
fast-growing project. Several companies are developing hardware devices based on IPCop, and the
open-source project Zerina deals with the integration of OpenVPN: http://home.arcor.de/
u.altinkaynak/openvpn.html.

Configuring OpenVPN
Up to now you have seen that OpenVPN has a secure and easy-to-use security approach and
a flexible networking model. Consequently, a very simple configuration syntax and good
documentation characterize OpenVPN's user interface. Configuration is done by editing a simple
text file; the syntax is the same on every operation system. Here is an example of a simple
configuration file with 13 lines:

remote feilner-it.dynalias.net
float
dev tun
tun-mtu 1500
ifconfig 10.79.10.1 10.79.10.2
secret my_secret_key.txt
port 5050
route 10.94.0.0 255.255.0.0 10.79.10.2
comp-lzo
keepalive 120 600
resolv-retry 86400
route-up "/sbin/firewall restart"
log-append /var/log/openvpn/ultrino.log

A command-line interface allows you to start temporary tunnels at your will, which is very useful
when you're testing setups. The same parameters as in the configuration file are added to the
command line, and the tunnels are started.

In the so-called server mode, OpenVPN can push various configuration data to the clients through
the tunnel. Multiple tunnels can be run on one singular port, either UDP or TCP. OpenVPN can be
tunneled through firewalls and proxies, if they allow HTTPS connections, and the server can tell
the client to use the tunnel as default route to the Internet.

This offers a huge variety of possibilities; you can have your field workers open only one port to
whatever network they are connected to. This is the port OpenVPN uses to connect to your
company's VPN server. Once connected, all Internet traffic from this laptop is routed via the
network of the company the VPN tunnel is connected to. In this way your company's firewall can
also protect the road warriors. A road warrior is a member of a company (or a company's network)

http://www.shorewall.net/OPENVPN.html
http://home.arcor.de/u.altinkaynak/openvpn.html
http://home.arcor.de/u.altinkaynak/openvpn.html

Chapter 3

who is working outside of the company's walls and connects to the network frequently via
different connections. A typical road warrior may be a salesman or saleswoman with his or her
laptop, who needs to access the company's resources from his or her customer's network.

Problems with OpenVPN
OpenVPN has a few weaknesses:

• It is not IPsec compatible, and IPsec is the standard VPN solution. Lots of devices
like Cisco or Bintec routers use IPsec and can connect to applications of other
manufacturers or software IPsec clients. At least they should be able to, because in
practice many manufacturers tend to develop their own proprietary extensions to IPsec,
which make their implementations practically incompatible with other IPsec devices.

• There are only a few people who know how to use OpenVPN, especially in difficult
scenarios (though such are rare). So if you read on you can acquire a precious qualification.

• There is no working GUI for administration (but there are some promising projects).
• Today, you can only connect to other computers. But this is changing; there are some

companies working on devices with integrated OpenVPN clients.

As you can see, the main weaknesses of OpenVPN are incompatibility to IPsec and lack of public
knowledge about its features and hardware manufacturers. The first will probably never change,
because the architectures differ too much, but the latter is already changing.

OpenVPN Compared to IPsec VPN
Even though IPsec is the de facto standard, there are many arguments for using OpenVPN. If you
want to convince your management about why your branches should be connected through
OpenVPN instead of IPsec VPN, the following table can help your argument (points preceded by
"+" are advantages and points preceded by "-" are disadvantages):

IPsec VPN OpenVPN

+ The standard VPN technology - Still rather unknown, not compatible with IPsec

+ Hardware platforms (devices, appliances) - Only on computers, but on all operating systems.
Exception are devices, where embedded UNIXs are
running like OpenWrt and similar

+ Well-known technology - New technology; still growing and rising

+ Many GUIs for administration - No professional GUI; however, there are some
interesting and promising projects

- Complex modification of IP stack + Simple technology

- Critical modification of kernel necessary + Standardized network interfaces and packets

- Administrator privileges are necessary + OpenVPN Software can run in user space, and can
be chroot-ed

- Different IPsec implementations of different
manufacturers can be incompatible

+ Standardized encryption technologies

 35

OpenVPN

 36

IPsec VPN OpenVPN

- Complex configuration, complex technology + Easy, well-structured, modular technology,
easy configuration

- Steep learning curve for newbies + Easy to learn, fast success for newbies

- Several ports and protocols in firewall necessary + Only one port in firewall necessary

- Problems with dynamic addresses on both sides + DynDNS works flawlessly, faster reconnects

- Security problems with IPsec technologies +SSL/TLS as industry-standard cryptographic layer

 + Traffic shaping

 + Speed (up to 20 Mbps on a 1Ghz machine)

 + Compatibility with firewalls and proxies

 + No problems with NAT (both sides can be in
NATed networks)

 + Possibilities for road warriors

Probably the best argument is that you can use both VPN solutions in parallel, at least if you're
using Linux or a Linux-based application. Due to the different approaches to networking, there are
no conflicts between the two systems.

Sources for Help and Documentation
If you want to learn more about OpenVPN (I bet you will), there are numerous resources in the
Internet. Websites, mailing lists, forums, and private pages of OpenVPN fans can be found in
abundance. Google finds more than three million hits for "open vpn". This list of course cannot be
complete, but here you will find links to websites that were helpful to me when I started using
OpenVPN and where I still look for help today.

The Project Community
OpenVPN project has its own website, including downloads of new versions and updates,
documentation, howtos, mailing lists, and links to various VPN-related pages. A project page can
hardly be better than that of OpenVPN. You'll find it at http://openvpn.net/.

The most important source of help is the mailing lists: http://openvpn.net/mail.html.

Since we are using SSL/TLS for encryption purposes, you certainly want to understand this
toolkit. The SSL/TLS Cryptographic libraries website provides detailed documentation and
mailing lists, which can be found at http://www.openssl.org/.

The website of the TLS Charter by the TLS Working Group provides a list with many related
RFCs and Internet drafts you might consider helpful: http://www.ietf.org/html.charters/
tls-charter.html.

http://openvpn.net/
http://openvpn.net/mail.html
http://www.openssl.org/
http://www.ietf.org/html.charters/tls-charter.html
http://www.ietf.org/html.charters/tls-charter.html

Chapter 3

The Universal TUN/TAP driver can be downloaded from the following page:
http://vtun.sourceforge.net/tun/. Nevertheless, this should not be necessary, since every
modern distribution (and kernel) should have this feature built-in. But the FAQ of this project may
be helpful for various questions.

Documentation in the Software Packages
If you install OpenVPN from the binary packages for your distribution, you will have the standard
documentation in the following directories:

Distribution Path to Documentation

Debian /usr/share/doc/openvpn

SuSE /usr/share/doc/packages/openvpn

Redhat /usr/share/doc/openvpn-2.0

Windows only online Documentation

Other distributions may have different locations; check your package management system for
details. RPM-based systems give a list of all files belonging to a specific package when you type
"rpm -ql openvpn" as super user. Debian-based systems (like Ubuntu) should give the same
information when root enters "dpkg -L openvpn". Simply replace openvpn with the name of the
package you installed.

The source code package (tarball) contains several READMEs and documentation files. Just
browse through the directories where you extracted OpenVPN to. And if you're interested, have a
look in some of the source code files; the developer comments can be a great help to understand
the depths of the software!

Summary
OpenVPN offers great possibilities; especially the networking concept allows very transparent
setups with firewalls or in road warrior configurations. James Yonan, the founder has made very
good decisions when trusting the TUN/TAP network drivers and the SSL/TLS libraries. OpenVPN
was first published in 2001; version 2 came out in 2005 and offers much more advanced features
than the versions before. Multi-client support, the Windows version, and the push/pull options are
only some of its features. OpenVPN is easy to configure and has only a few weaknesses, the most
serious of which is its incompatibility to IPsec by design. But to name this a weakness is a tough
verdict, if it is compared to IPsec as done in this chapter. IPsec still is the standard, but OpenVPN
has much more features at a much better security level.

 37

http://vtun.sourceforge.net/tun/

4
Installing OpenVPN

Installing OpenVPN is easy and platform independent. In this chapter we will install it on
Windows, Mac OS X, different Linux versions, and FreeBSD. Furthermore, we will compile the
source code provided by the OpenVPN project and enable the required network support in your
kernel for the TUN/TAP devices. We will start with the graphical installation under Windows,
Mac OS X, and SuSE, and finish with building our own OpenVPN version from the source code,
including hints for the configuration of an individual kernel.

Prerequisites
Some prerequisites have to be fulfilled if you want to install OpenVPN on your system. Windows
users must use Windows 2000 or XP; Mac OS X is required on Apple platforms. This is all that is
required for these operating systems, but Linux/UNIX systems must meet the following demands:

• Your system must provide support for the Universal TUN/TAP driver:
The kernels newer than version 2.4 of almost all modern Linux distributions provide
support for TUN/TAP devices. Only if you are using an old distribution or if you have
built your own kernel, will you have to add this support to your configuration. The
section of this chapter Enabling Linux Kernel Support for TUN/TAP Devices, deals with
this problem. This project's website can be found at:
http://vtun.sourceforge.net/tun/.

• OpenSSL Libraries have to be installed on your system:
I have not encountered modern Linux/UNIX systems that do not meet this requirement.
However, if you want to compile OpenVPN from source code, the SSL development
package may be necessary. The website is: http://www.openssl.org/.

• The Lempel-Ziv-Oberhumer (LZO) Compression library has to be installed:

Again, most modern Linux/UNIX systems provide these packages, so there won't be any
problem. LZO is a real-time compression library that is used by OpenVPN to compress
data before sending. Packages can be found on http://openvpn.net/download.html,
the website of this project is: http://www.oberhumer.com/opensource/lzo/.

http://vtun.sourceforge.net/tun/
http://www.openssl.org/
http://openvpn.net/download.html
http://www.oberhumer.com/opensource/lzo/

Installing OpenVPN

Most Linux/UNIX systems' installation tools are able to solve these so-called dependencies on
their own, but it might be helpful to know where to get the required software.

Obtaining the Software
Basically, installation of OpenVPN can be done in one of the following ways:

• For Microsoft Windows operating systems, you have to download the binary .exe
file from http://openvpn.net/download.html or the package containing a
graphical user interface from http://openvpn.se/.

• On Macintosh systems running Mac OS X, there is a graphical installation wizard
and management tool called Tunnelblick.

• Most commercial Linux systems, like SuSE, provide installation tools like Yet
Another Setup Tool (YaST) and contain up-to-date versions of OpenVPN on their
installation media (CD or DVD). Furthermore, systems based on RPM software can
also install and manage OpenVPN Software at the command line.

• Linux systems like Debian use sophisticated package management tools that can
install software provided by repositories on web servers. No local media is needed;
the package management will resolve potential dependencies itself and install the
newest or safest possible version of OpenVPN.

• FreeBSD (like other BSD-style systems).
• Like all open-source projects, OpenVPN source code is provided for download.

These compressed tar.gz or tar.bz2 archives can be downloaded from
http://openvpn.net/download.html and unpacked to a local directory. This source
code has to be configured and translated (compiled) for your operating system.

• You can also install unstable, developer, or older versions of OpenVPN from
http://openvpn.net/download.html. This may be interesting if you want to test
new features of forthcoming versions.

• Daily (unstable!) OpenVPN source code extracts can be obtained from
http://sourceforge.net/cvs/?group_id=48978. Here you find the Concurrent
Versions System (CVS) repository, where all OpenVPN developers post their
changes to the project files.

Please note that all OpenVPN versions not tagged as stable should never be used in the
production environment. There may be security issues and bugs that cause the code to
crash or open your complete network to intruders. The stable versions have been tested
for stability and security flaws and will not be published as stable until they meet the
developer team's requirements.

40

http://openvpn.net/download.html
http://openvpn.se/
http://openvpn.net/download.html
http://openvpn.net/download.html
http://sourceforge.net/cvs/?group_id=48978

Chapter 4

Installing OpenVPN on Windows
If you want to install OpenVPN on Windows, you have to make a choice before downloading.
You can install the original OpenVPN Software from http://openvpn.net/download.html or
(this is my preferred suggestion) install the OpenVPN GUI from http://openvpn.se/. This
package contains the OpenVPN Software plus a GUI to bring up or close down tunnels.
Especially, if you set up an OpenVPN client—be it a laptop or desktop PC of a home worker,
which is only connecting temporarily to your VPN—the Windows user will want to have an
easy-to-use, clickable interface. However, if you do not want the users to interact with the VPN
tunnels, the original OpenVPN Software will do.

OpenVPN can be run as a service on the Windows PC, which means it is started automatically on
startup. It can be configured to enable the tunnel automatically or forced by a click of a mouse.
The installation is pretty straightforward and should not pose any problem to the experienced
Windows user. The following sections give you a guided installation process.

If you are prompted that the driver has not passed Windows Logo testing, click on Continue anyway.

Downloading and Starting Installation
Download the newest version of the OpenVPN GUI from http://openvpn.se/ to your local
drive. Log in as administrator or privileged user and double-click on the downloaded file to start
the setup wizard. If you are using a desktop firewall, you will be prompted to allow OpenVPN
being installed and connecting to the Internet later.

The OpenVPN GUI installation wizard, probably the most convenient way to install OpenVPN on
Windows, is started. Click on Next to proceed.

41

http://openvpn.net/download.html
http://openvpn.se/
http://openvpn.se/

Installing OpenVPN

Even though OpenVPN and the OpenVPN GUI are completely available under the open source
General Public License (GPL), you have to accept a license agreement. You should read the license
to make sure that your planned use of OpenVPN conforms to it. Click on I Agree to proceed.

Selecting Components and Location
The next dialog window offers a choice on the OpenVPN components you may want to install.
Thus the standard selection of components makes sense in almost all cases.

42

Chapter 4

In this dialog, you have several options to choose from. Even if you normally don't need to make
changes here, the following table gives an overview of the entries and when you should install
which feature. The Client Install is a system that only connects to another OpenVPN system,
whereas the Server Install is an OpenVPN system that allows incoming connections.

Option Feature Client Install Server Install

OpenVPN User-Space
Components

The OpenVPN program x x

OpenVPN RSA Certificate
Management Scripts

easy-rsa for Windows x

OpenVPN GUI The graphical user interface x

AutoStart OpenVPN GUI Link for auto start x

My Certificate Wizard Certificate requests for a
certificate authority

x

Hide the TAP-Win32 VEA Interface is not shown in network
setup

OpenVPN Service Configure OpenVPN as a service x

OpenVPN File Associations Configuration files (*.ovpn) are
associated with OpenVPN

x x

OpenSSL DLLs Dynamic link libraries x x

TAP-WIN32 VEA Virtual network interface x x

Add OpenVPN to PATH Openvpn.exe is in the path of
every user's command line

x x

Add Shortcuts to Start Menu Shortcut to start menu x x

Newer versions also include the OpenSSL Utilities option.

As you can see, the only differences are the RSA Management and the option to run OpenVPN as a
service. Both can be configured with different means, like the configuration file, the Windows
system management, or software like xca that we will use to generate and administer certificates.

Press Next to continue installation.

43

Installing OpenVPN

Now you have to select an installation directory for OpenVPN. The standard installation path of
OpenVPN under Windows is C:\Program Files\OpenVPN, and this should work fine in almost any
case. However, you can set this path as you please. After clicking on Install, the installation
process is started.

Finishing Installation
While OpenVPN is installing, you can read its output in the installation window and follow the
creation of folders, files, and shortcuts and the installation of drivers (TAP) for networking.

44

Chapter 4

If you've made it so far, you have successfully installed OpenVPN on your Windows system. If
you want to read the Readme file (as of September 2005 this is pretty poor and contains only a
link to the website), activate the checkbox Show Readme before you click Finish.

Testing the Installation—A First Look at the Panel Applet
After the installation of OpenVPN GUI, OpenVPN is started and a panel applet is created. In the
following screenshot, it is the icon close to the left:

This applet provides a convenient method for Windows users to control and configure (partly)
OpenVPN. However, as there is no interface for configuration as yet, the configuration file can
only be edited using an editor. And until a first configuration is created, the context menu may
look rather poor. Right-click on the panel applet:

45

Installing OpenVPN

Once you have configured a first connection, this menu will be populated with new entries. With
the entries Connect and Disconnect you can start and stop the configured tunnels.

Installing OpenVPN on Mac OS X (Tunnelblick)
Of course there is also OpenVPN software for Mac OS X. Its name is Tunnelblick, which is free
open-source software, released under the BSD license, and it contains a graphical installation
wizard. You can download it from http://www.tunnelblick.net/. Tunnelblick comes as a disk
image file including the command-line application (by the OpenVPN project) and the Tunnelblick
GUI for Macintosh computers.

If you need more detailed information on installing and uninstalling Tunnelblick, the online
readme http://www.tunnelblick.net/README.txt file is the best place to look first. It contains a
full list of files that are installed on your system. For version 3.0 these files are:

/System/Library/Extensions/tap.kext
/System/Library/Extensions/tun.kext
/System/Library/StartupItems/tap
/System/Library/StartupItems/tun
/usr/local/sbin/openvpn
/usr/local/sbin/openvpnstop
/usr/local/sbin/openvpnstart
/Applications/Tunnelblick.app

To uninstall Tunnelblick from your system, you just need to remove these files and reboot
your machine.

But before that, let's install Tunnelblick. The installation is started simply by double-clicking on
the file Tunnelblick-Complete.mpkg to start the installation wizard.

46

Chapter 4

An installation wizard will guide you through five steps. Simply choosing the installation location
and typing and the wizard will solve all questions for you. The file README.txt contains
information on installing, uninstalling, and configuration of OpenVPN with special regards to
Macintosh and OS X 10.3 or later.

Testing the Installation—The Tunnelblick Panel Applet
After installation, you will find the Tunnelblick icon in the system tray of your panel:

47

Installing OpenVPN

If you select the menu entry Edit Config File, you will be presented the standard configuration file
in a text editor:

If you need more information on OpenVPN on Macintosh, the following links are good places to visit:

• Detailed installation instructions for Mac OS 10.3:
http://www.helsinki.fi/atk/english/hy-ppp/hy-vpn/hy-vpn-mac.html

• Homepage of the Tunnelblick OpenVPN GUI for Macintosh:
http://www.tunnelblick.net/

Installing OpenVPN on SuSE Linux
Installing OpenVPN on SuSE Linux is almost as easy as under Windows or on the Mac. Linux
users may say that it is even easier. On SuSE Linux almost all administrative tasks can be done
using the administration interface YaST. OpenVPN Software can be installed completely with
YaST. The people distributing SuSE have always tried to include up-to-date software in their
distribution and thus the installation media of SuSE 9.3 already contains version 2.0 of OpenVPN.

48

Chapter 4

Using YaST to Install Software
Start YaST. Under K Desktop Environment (KDE—the standard desktop under SuSE Linux),
you will find YaST in the main menu under System | YaST. If you are logged in as a normal user,
you will be prompted to enter your root password and confirm the same. The YaST control center
is started.

This administration interface consists of many different modules, which are represented by
symbols in the right half of the window and grouped by the labels on the left. After starting YaST,
click on the symbol labeled Install and Remove Software to start the software management
interface of YaST.

49

Advanced Certificate Management

In the previous example we see a CA with many certificates and requests. Right-click on your newly
generated request, and select the menu entry Sign Request to sign it using the active CA's certificate.
Another small menu appears, asking you whether the request will be signed as a server or a client.
This is for an example purpose that we have talked about on the xca pages. For a TLS server's
certificate, choose Sign Request (Server); for all clients, please choose Sign Request (Client).

Now we are asked to enter the CA's password to sign the request:

Enter your password and check again, if the validity is suitable for your purposes and click on OK
to confirm. After some seconds of calculating, your machine will tell you that the certificate has
successfully been created. Now switch to the Keys section. There is a new entry for the newly
created key/certificate pair, and there is also a new entry in the list of the available certificates.

Exporting Keys and Certificates with TinyCA2

 206

Chapter 9

With TinyCA2 we can export the CA and the client certificate and key to a local file. TinyCA2
knows several file formats for the key/certificate pairs. In the previous screenshot, you see the
default, .pem key files. Please note that if you do not want to enter a passphrase every time your
OpenVPN tunnel is started, then you must activate the button Without Passphrase (PEM) | Yes.
Otherwise, your key is password-protected, which may be considered as an extra level of security.

Enter a file name or select a directory by clicking on the button Browse and then click on the
button Save. Repeat these steps for the client certificate (use the standard PEM Certificate) and the
CA certificate (by clicking on the icon Export CA in the toolbar).

Revoking Certificates with TinyCA2
Creating and exporting a CRL with TinyCA2 is very easy, too. In the Certificate tab, right-click on
the certificate you want to revoke. You are prompted for the CA password and you are given the
possibility to enter a reason for revocation:

Enter the CA password, select a revocation reason, and click on OK to revoke the selected
certificate. Now switch to the CA tab and click on the Export CRL icon in the toolbar. Again, you
have to enter the CA's password and a validity date for this CRL. Enter a file name and click on
the Save button to export the CRL.

 207

Advanced Certificate Management

 208

Summary
We have created, imported, and exported CA certificates, client and server certificates and keys, in
addition to revocation lists with the tools xca and TinyCA2. We have seen that there are many
features TinyCA2 offers that are neither in the scope of easy-rsa nor available in xca. This is the
reason why TinyCA2 is my favorite certificate management tool. However, all those tools use
only the "toolbox" OpenSSL. If you want to read more and become a certificate professional,
"man OpenSSL", then the website http://www.openssl.org is the place to go.

10
Advanced OpenVPN

Configuration

In this chapter, we will deal with several examples of advanced OpenVPN configurations such as:

• Tunneling through a proxy server like squid
• Scripting OpenVPN—An overview
• Authentication methods
• Using a server configuration with specific per-client configurations pushed to clients

based on their certificates
• Pushing routing commands to clients
• Pushing and setting the default route through a tunnel
• Protecting clients through a firewall behind the tunnel
• Distributed compilation through VPN tunnels with distcc
• Automatic installation for Windows clients

Because OpenVPN offers an abundance of possibilities, some aspects of these configurations can
only be covered at a basic level (like squid proxy or LDAP authentication). However, there are
hints and links to Internet sites containing detailed information about these setups.

Tunneling a Proxy Server and Protecting the Proxy
OpenVPN can use the HTTP method CONNECT to establish a tunnel between the client and its VPN
server. Since this is a standard method used by most banking websites or any other security-
conscious websites, most proxies and firewalls are open to such connections.

A simple OpenVPN configuration entry for use with an HTTP proxy may look like this:
(...)
port 443
proto tcp-client
http-proxy proxy 3128
http-proxy-retry
http-proxy-option AGENT Mozilla/4.0 (compatible; MSIE 4.01; Windows NT 5.0)
(...)

Advanced OpenVPN Configuration

 210

We are using port 443 TCP, which will make our VPN tunnel almost invisible to local
administrators. OpenVPN must furthermore know where to find the proxy server and on which
port it is listening. In the aforementioned example, the name of the server is proxy and its port is
3128. In addition to this, OpenVPN will try indefinitely to establish a connection and stealthily
pretend to be a Mozilla browser on Windows 2000. Pretty nice, isn't it?

I consider this as one of the main advantages of OpenVPN. There are only few networks where
an OpenVPN tunnel cannot be set up—don't worry about the frowning local administrators at
your side!

The following table shows possible options concerning proxy configuration of OpenVPN:

Parameter Function

--auto-proxy Tries auto-detection of proxy settings

--http-proxy <IP> <port>
<authfile><auth-method>

IP and port of proxy server, optionally with proxy
authentication:
<authfile> is a file containing username and
password on two separate lines
<auth-method> can be ntlm, basic, or none

--http-proxy-retry Retries indefinitely to connect to proxy

--http-proxy-timeout <n> Sets proxy timeout manually to n seconds; the
default is 5 (s)

--http-proxy-option type <option> Sets user agent (browser version string) or HTTP
version that is used

--port 443 (HTTPS) is probably the most inconspicuous
selection (remember to set this on both sides), but
most proxies permit also port 80 (HTTP) or 21 (FTP)

--socks-proxy <IP> <port> Uses the socks proxy on machine with <IP>
<port>

--socks-proxy-retry Retries indefinitely

However, there are possible solutions to prevent OpenVPN tunnels. A secure squid proxy server
configuration might for example look like this:

(...)
acl SSL_ports port 443 563
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 # https, snews
(...)
acl CONNECT method CONNECT
http_access allow manager localhost
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
(...)
acl ADS_WWW_Benutzer external wb_group WWW_User
acl ADS_WWW_trusted external wb_group WWW_trusted
(...)
http_access allow WWW_User

Chapter 10

http_access allow WWW_trusted
http_access allow WWW_trusted !Safe_ports
http_access allow WWW_trusted CONNECT !Safe_ports
http_access deny all
(...)

Squid uses access lists (acl) and access directives (http_access), which can be found in
/etc/squid/squid.conf to control Internet access. In the configuration above, access lists are
defined for "SSL Ports" and "Safe Ports" for HTTPS and FTP. Some lines further down in this file
there are http_access directives, which explicitly allow access to SSL and safe ports for members
of the user group WWW_trusted only. In this configuration an external authentication program,
wb_group is used. wb_group is a small Perl script that enables squid to ask user information from a
Microsoft Active Directory Server. On this system, Windows administrators can control the usage
of HTTPS or other SSL connections through their proxy server by simply adding or removing
users from the privileged group. As a side effect, only users in the group WWW_trusted can access
https:// web pages. This may be difficult to communicate in a company, but it is definitely more
secure. We have been using similar setups in recent years, and (after convincing the
administrators) have only had positive experience.

Scripting OpenVPN—An Overview
Another striking option of OpenVPN is its scripting capabilities. We can create our own scripts
and have them called on changes of the connection state. This makes it easy to execute a special
(e.g. Firewall) script any time a client connects or on similar occasions. There's almost no limit; I
leave it up to you to imagine the possibilities.

The following table gives an overview over the possible interfaces where OpenVPN can be forced
to execute arbitrary scripts:

Option Occurrence

--learn-address <cmd> When the IP of a VPN partner changes

--ipchange <cmd> When the IP of the server has changed

--client-connect <cmd> When a client connects

--client-disconnect
<cmd>

When a client disconnects

--up <cmd>, down <cmd> After configuration (up = starting, down = stopping) of the TUN/TAP
device

--down-pre Before shutting down the TUN/TAP device

--up-restart When tunnels are restarted, up/down scripts are also executed

• learn-address: This option calls a command and hands over three variables:
operation, which can be one of "add", "update", or "delete" and directly refers to the
change of the client's address that has taken place, address containing the IP address
set or deleted, and common name, which is again the entry from the client's
certificate's subject line.

 211

Advanced OpenVPN Configuration

 212

• ipchange: This refers to the IP address of the VPN server; the command is executed
after authentication (or remote IP change).

• client-connect and client-disconnect: These call commands immediately after
connection or disconnection of a VPN client. These options can only be used in
OpenVPN server mode.

• --up and --down: These are probably the most interesting scripting interface options.
The scripts defined here are called immediately after starting or stopping the tunnel
interfaces and before an optional --user identity change takes place. Thus here root
privileges may be available, which allow, e.g., setting routes or similar tasks.

In the manpage of OpenVPN, http://openvpn.net/man.html, there is a special section
Environmental Variables listing all variables passed to commands, and the (German) website
http://www.pronix.de/pronix-991.html shows a list of the variables that are passed to the
command invoked. For non-German speakers, here is a brief English list of the variables:

Environment
Variable

Contents If DEV = TUN Contents If DEV = TAP

$1 Name of (TUN) interface Name of (TAP) interface

$2 MTU MTU

$3 Link-MTU Link-MTU

$4 Local IP of TUN interface Local IP of TAP interface

$5 Remote IP Netmask of TAP interface

$6 init, if called by --up;
restart if called by --up-
restart

init, if called by --up;
restart if called by --up-
restart

Using Authentication Methods
We have learned before that OpenVPN can be used with authentication based on shared secrets
(static keys) and X.509 certificates. Another useful option for authentication is authentication
plug-ins called with the configuration parameter auth-user-pass-verify, which can be used
together with both methods mentioned before. For example, in a certificate-based VPN, we can
use an authentication plug-in to make sure that only a user knowing the appropriate
username/password combination can start the tunnel. This may be a convenient additional level of
security for laptops or other road-warrior machines.

While certificates in this context tend to protect and authenticate machines rather than users,
username/password combinations are useful for VPNs that are started by a human. The Windows
GUI will pop up a small authentication window where the user must enter a username and
password. The VPN client takes these values and sends them to the VPN server, which starts the
plug-in program (as configured in auth-user-pass-verify) to validate the combination. If the
authentication program returns an OK, authentication was successful, and the tunnel is created.
The tunnel will only be established if the password is correct.

http://www.pronix.de/pronix-991.html

Chapter 10

For this purpose, the following configuration parameters must be added: In the server
configuration file, add auth-user-pass-verify /path/to/your/auth/script to your server
configuration and auth-user-pass to your client's configuration. The following table shows the
usage of these parameters:

Parameter Allowed options Usage Function

--auth-user-
pass-verify

<script>
<method>

Server
configuration

Activates server's authentication and
defines the name of the authentication
script and the method to use for
username/password handling

--auth-user-pass <file> Client
configuration

Activates client's authentication and
optionally defines a file where
username and password are stored

On SuSE systems there are some example scripts (like auth_pam.pl) provided with OpenVPN,
which can be found in /usr/share/doc/packages/openvpn/sample-scripts. But a typical
scenario for such an authentication may be a local LDAP server. LDAP is the system-independent
state of the art for all modern directory services both in open-source servers and also in
Microsoft's Active Directory Service. The following overview will give you some hints on how to
create an authentication plug-in using your own LDAP authentication for OpenVPN.

On a Linux system with the LDAP client tools installed, the command ldapwhoami can be used for
testing username/password pairs against an LDAP server. In the following examples the LDAP
server is 10.10.10.1, the user mfeilner, and the password is correct_password. The string
uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home must be adapted to the settings
on your LDAP server. Here is the output of the ldapwhoami command:

suse01:/var/log # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-
it_Users,dc=feilner-it,dc=home -w correct_password
dn:uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home

suse01: # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-
it_Users,dc=feilner-it,dc=home -w wrong_password
ldap_bind: Invalid credentials (49)

The first command will give a return code of "0", whereas the second command, resulting in a
failed authentication returned a value of "1". Creating a little script that implements the
aforementioned LDAP command and returns a 0 if authentication was successful, and a 1 if
authentication has failed, is easy and I leave this up to you. An example for such an LDAP
authentication plug-in script for OpenVPN can be found here: http://www.indato.ch/
openvpn/openvpn.html.

Even though this site is in German, the LDAP script found here is documented in English. You
can find it if you scroll down until the heading Optionale Authentisierung mit LDAP. An English
site with an OpenVPN Auth-LDAP Plugin can be found here: http://www.opendarwin.org/
~landonf/software/openvpn-auth-ldap/.

phpLDAPadmin is probably one of the best LDAP administration tools. If you are thinking of
setting up an LDAP server (which can be used for a variety of purposes), have a look at this
screenshot of phpLDAPadmin on an LDAP server with the entry uid=mfeilner,ou=Feilner-
it_Users,dc=feilner-it,dc=home, which was used for authentication above.

 213

http://www.indato.ch/%0Bopenvpn/openvpn.html
http://www.indato.ch/%0Bopenvpn/openvpn.html
http://www.opendarwin.org/%7Elandonf/software/openvpn-auth-ldap/
http://www.opendarwin.org/%7Elandonf/software/openvpn-auth-ldap/

Advanced OpenVPN Configuration

On the left is the LDAP directory tree, on the right the properties of the selected object. Here we
can change e.g. the password for the OpenVPN account, create and delete accounts, and thus
manage access to our VPN on the basis of the selected authentication plug-in.

Using a Client Configuration Directory with
Per-Client Configurations
Another striking feature of OpenVPN is the fact that we can have client configurations pushed
through the tunnel on creation and use client-specific configurations, which are simply set by
the subject line of the client's certificate. An appropriate server configuration file may look like
the following:

port 443
dev tun0FIT
ca /etc/openvpn/certs/ca.crt
cert /etc/openvpn/certs/firewall.crt
key /etc/openvpn/certs/firewall.key
dh /etc/openvpn/certs/dh2048.pem
tls-auth /etc/openvpn/certs/ta.key 0
auth SHA1
cipher AES-256-CBC
tls-cipher DHE-RSA-AES256-SHA
server 10.179.0.0 255.255.0.0
ifconfig-pool-persist /etc/openvpn/ipp.txt
client-config-dir clients
keepalive 10 120
resolv-retry 86400
comp-lzo

 214

Chapter 10

status /var/log/openvpn/status.log
log /var/log/openvpn/main.log
tls-server
verb 3

There are three lines that are relevant in this context:

1. server 10.179.0.0 255.255.0.0: This tells OpenVPN on this machine to act as a
server and automatically distribute IP addresses to clients connecting.

2. ifconfig-pool-persist /etc/openvpn/ipp.txt: This makes OpenVPN keep a list
of certificate to IP relationships, so that a client connecting will (probably) always
have the same IP.

3. client-config-dir clients: This has OpenVPN look in the directory "clients" for
a client-specific configuration file when a client connects.

A client configuration file must have a name matching the CN in the Subject line of the certificate.
If a client connects with a certificate containing the following subject:

(...)
Subject: C=DE, ST=Bayern, L=Regensburg, O=Feilner-IT,
CN=mfeilner/emailAddress=mfeilner@feilner-it.net
(...)

Then the server will look if the directory clients contain a configuration file named mfeilner. This
file may contain push options like the following:

ifconfig-push 10.179.0.3 10.179.0.4
push "route 10.1.0.0 255.255.0.0"

In this scenario, this client will always have the IP address 10.179.0.3 and is told about a network
(10.1.0.0) behind the tunnel. Thus, if we use different client configurations, we can control the routing
and network configuration for every client. It's simple to grant access to the network by activating or
deactivating a client's routing on connecting, but we must always remember that this offers no real
protection, because every local administrator could also activate this routing on the client.

On the client configuration, the parameter client must be present. If we want to have the
client redirect its default gateway through the tunnel, we simply need to add the parameter
redirect-gateway.

Redirecting the client's default gateway is another excellent feature of OpenVPN, especially when
combined with HTTP-proxy tunneling. The parameter redirect-gateway causes three steps:

1. A static route to the other tunnel partner is created.
2. The old default gateway is deleted.
3. A new entry for the default gateway is created (pointing to the IP address of the

other tunnel endpoint).

Of course we can enter these steps manually, if we like. The route command will help us here:
debian01:~# route add 172.16.103.2 gw 172.16.247.1
debian01:~# route del default
debian01:~# route add default gw 10.179.10.2
debian01:~# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

 215

Advanced OpenVPN Configuration

 216

172.16.103.2 172.16.247.1 255.255.255.255 UGH 0 0 0 eth0
10.179.10.2 0.0.0.0 255.255.255.255 UH 0 0 0
tunVPN0
172.16.247.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.76.0 10.179.10.2 255.255.255.0 UG 0 0 0
tunVPN0
192.168.250.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 10.179.10.2 0.0.0.0 UG 0 0 0
tunVPN0
debian01:~#

First, we added a static route to the VPN partner (route add 172.16.103.2 gw 172.16.247.1).
Then we deleted the old default route (route del default), and as a last step we created the new
default route with route add default gw 10.179.10.2. From this moment on, all traffic not
destined to the VPN partner's public IP will be routed through the tunnel, as the output of route -n
will show. Because the routing entries will be useless when the VPN partner's IP changes, it is a
good idea to have OpenVPN set the routing for us.

The next chapter deals more detailed with interpreting routing tables.

Individual Firewall Rules for Connecting Clients
One striking possibility OpenVPN offers is a setup where:

• An OpenVPN machine acts as a server that protects the company's network,
admitting access for OpenVPN clients.

• The clients are automatically assigned IPs by the server.
• The clients are equipped with certificates, and identified and authorized by

these certificates.

The scripting parameter learn-address in the server's OpenVPN configuration file will have the
server execute a script whenever an authorized client connects to the VPN and is assigned an
address. This parameter takes the full path to a script as an option:

learn-address /etc/openvpn/scripts/openvpnFW

In this example, the script openvpnFW will be executed each time a client is assigned an IP address
and will be passed three variables by the OpenVPN server process:

1. $1: The action taken; this may be one of add, delete, update
2. $2: The IP assigned to the client connecting
3. $3: The common name in the subject line of the client's certificate

Add the line learn-address /etc/openvpn/scripts/openvpnFW to your OpenVPN server
configuration file and edit the file /etc/openvpn/scripts/openvpnFW to be like the following.
These lines will show how to make use of these parameters in a short Linux shell script:

#!/bin/sh
LOGFILE=
DATE=`/bin/date`
echo $DATE $1 $2 $3 >> $LOGFILE

Chapter 10

This script will only export the variables passed to the logfile, including a timestamp that is added
by the command date. Stop and start your tunnel a few times. Now let's have a look at the file
/var/log/openvpn/connections.log:

Mi Feb 1 04:33:53 CET 2006 update 10.99.0.3 mfeilner
Do Feb 2 04:34:33 CET 2006 update 10.99.0.3 mfeilner
Fr Feb 3 04:34:14 CET 2006 update 10.99.0.3 mfeilner
Sa Feb 4 04:34:53 CET 2006 update 10.99.0.3 mfeilner
So Feb 5 04:34:43 CET 2006 update 10.99.0.3 mfeilner

This example shows my VPN client reconnecting every day. This alone might yet be an
interesting feature, if you want to keep track of your users and their VPN connections. However,
we can do more. Let's add some more lines to our openvpnFW script:

if [$1 = add]
then
/etc/openvpn/scripts/$2.FW_connect.sh
fi
if [$1 = delete]
then
/etc/openvpn/scripts/$2.FW_disconnect.sh
fi

Two simple tests are run and, depending on the content of the variable $1, different firewall scripts
are executed. Let's express this in brief. If the first variable passed is add, then the script
/etc/openvpn/scripts/$2.FW_connect.sh is run, where $2 will be replaced by the IP of the
client connecting. If for example a client mfeilner connects and is assigned the IP 10.99.0.3,
then the variables passed to this script openvpnFW will be:

add 10.99.0.3 mfeilner

And the script run will be called: /etc/openvpn/scripts/10.99.0.3.FW_connect.sh.

However, if the variables passed to openvpnFW are the following:
delete 10.99.0.3

then the script /etc/openvpn/scripts/10.99.0.3.FW_disconnect.sh will be executed.

I think you have already guessed that these two scripts contain firewall rules (like iptables
statements) for the client with the certificate mfeilner. Even though all of this could be done
within one single script, I prefer to have the tests and firewall rules split up in several scripts.

This setup can become very powerful and fairly complex. A client that has its default route set
through the tunnel can be allowed selective Internet access, simply by enabling or disabling,
routing or forwarding. And access to the local servers can also be easily managed: E.g. A SAP
server might only be available for road warriors from 7 am to 6 pm, whereas during the night
firewall rules protect the server.

 217

Advanced OpenVPN Configuration

 218

Distributed Compilation through VPN Tunnels
with distcc
distcc is a compiler (or a front end to GNU Compiler Collection (GCC)) designed to split up
compiling processes over many machines, which can speed up the process enormously. The
distccd daemon has to be run on all of the systems that are to participate, then the system starting
the process must be informed about the distcc hosts, and then we can start a compiling process.

On Debian systems, installation is as easy as typing apt-get install distcc. As the next step
some parameters have to be set in /etc/default/distcc:

• Whether distccd should be started on boot
• A list of other distcc hosts that are allowed to connect
• The interface distcc should listen on for incoming connections

This is the file /etc/default/distcc on a Debian system:
Defaults for distcc initscript
sourced by /etc/init.d/distcc

should distcc be started on boot?

STARTDISTCC="true"

STARTDISTCC="false"

Which networks/hosts should be allowed to connect to the daemon?
You can list multiple hosts/networks separated by spaces.
Networks have to be in CIDR notation, f.e. 192.168.1.0/24
Hosts are represented by a single IP address

ALLOWEDNETS="127.0.0.1"

ALLOWEDNETS="127.0.0.1"

Which interface should distccd listen on?
You can specify a single interface, identified by it's IP address, here.

LISTENER="127.0.0.1"

LISTENER="127.0.0.1"

Here we will have to edit the parameters ALLOWEDNETS and LISTENER to our needs and repeat this
step for every partner that is supposed to take part in the collective compilation. Then, either edit
your startup files to include a system variable called DISTCC_HOSTS or create a configuration file
./distcc/hosts in your home directory with a list of the other hosts that are supposed to take part in
compiling. The content of this variable or file should simply be a (space-separated) list of hosts like:

10.179.0.1 192.168.1.4 10.179.0.3

Chapter 10

I think you will already know where this is leading to: we will install OpenVPN tunnels on each
machine taking part in the distcc network and then we only need to enter the IP of the tunnel
machines in these files here.

That's all, now we can use distcc over the tunneled connections. Therefore the distcc daemon
has to be started with /etc/init.d/disstcc start and then we can start a compiling process
where we use distcc as compiler: For instance, in the directory /usr/src/linux, simply type
make CC=distcc to have the selected machines in your network compile this machine's kernel
together. Or have a look at the following example where OpenVPN is compiled via distcc:

debian01:~/openvpn-2.0.5# make CC=distcc
make all-am
make[1]: Entering directory `/root/openvpn-2.0.5'
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mroute.o -MD -MP -MF
".deps/mroute.Tpo" -c -o mroute.o mroute.c; \
 then mv -f ".deps/mroute.Tpo" ".deps/mroute.Po"; else rm -f
".deps/mroute.Tpo"; exit 1; fi
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mss.o -MD -MP -MF
".deps/mss.Tpo" -c -o mss.o mss.c; \
 then mv -f ".deps/mss.Tpo" ".deps/mss.Po"; else rm -f ".deps/mss.Tpo";
exit 1; fi
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mtcp.o -MD -MP -MF
".deps/mtcp.Tpo" -c -o mtcp.o mtcp.c; \
 then mv -f ".deps/mtcp.Tpo" ".deps/mtcp.Po"; else rm -f
".deps/mtcp.Tpo"; exit 1; fi
(...)

Ethernet Bridging with OpenVPN
On Linux, Windows XP, and Windows 2003 we can use our VPN tunnels as one big logical
Ethernet network. By connecting (bridging) a virtual OpenVPN interface and a real Ethernet
interface, we connect (bridge) the networks behind these interfaces and provide a virtual Ethernet
between the hosts in the real networks, including exchange of Ethernet Frames. This feature can
be useful for Windows users that will need to exchange broadcast packages through the tunnel,
e.g. for network browsing, LAN parties, and more.

Setting up OpenVPN for bridging mode is simple and the same for all operating systems: We only
have to make sure our OpenVPN setup is working and that we are using TAP devices. I recommend
the use of TLS-server setup with clients that are automatically assigned addresses and configurations.

On Linux, you will need to install the bridge-utils package and follow the information on the
website http://openvpn.net/bridge.html. Windows users can simply use the network settings
of their operating system to activate bridging mode:

Open your Network Connections window and select (mark) the two network interfaces that you
want to bridge. Then select the entry Bridge Connections from the context menu.

 219

Advanced OpenVPN Configuration

A new icon will appear, called Network Bridge, and the LAN interface will show Bridged in
its name:

 220

Chapter 10

This Ethernet bridge can now be configured (almost) like any other network device. Select the
entry properties from its context menu:

As last step we have to assign an IP to this interface or configure the interface to obtain an IP
automatically, which is the default setting. Select the entry Internet Protocol (TCP/IP) from the list
This connection uses the following items: and click on the button Properties to assign an IP:

 221

Advanced OpenVPN Configuration

That's it, your Ethernet Bridge is up and running. If you run into trouble with your OpenVPN
configuration, check these websites for examples and guidelines:

http://www.pavelec.net/adam/openvpn/bridge/

http://openvpn.net/bridge.html

Automatic Installation for Windows Clients
If you have to administer a large Windows network, you will probably know the pains of having
to install software on several clients. There is a convenient way to install OpenVPN (almost)
automatically: The open source Windows software Nullsoft Scriptable Install System (NSIS)
installer available from http://www.openvpn.se/files/nsis/nsis205.exe and documented in
http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html
creates a executable file including configuration and certificate for your client.

Simply download the NSIS installer and execute it. In most cases, you will not need to make any
changes to the default values during installation, except maybe for the path. Simply click the
button Next three times, agree to the license, and NSIS is installed.

 222

http://www.openvpn.se/files/nsis/nsis205.exe
http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html

Chapter 10

The following window shows the standard dialog of the NSIS installer providing detailed
information on this tool:

If you are interested in more information on the NSIS installer, have a look at the Websites link
here. Your next step will be downloading and extracting the OpenVPN-GUI source code from
http://www.openvpn.se/files/install_packages_source/.

 223

http://www.openvpn.se/files/install_packages_source/

Advanced OpenVPN Configuration

Then copy your OpenVPN configuration and certificates to the directory where you extracted the
sources to and open the file openvpn-gui.nsi with Notepad. Here you only need to enter the
name of your files and the path, if it differs from the values in the file. Search for lines containing
<File "${HOME}\config\Office.ovpn"> and change this to your needs.

The section Modifying the script for your own needs of the website http://openvpn.se/files/
howto/openvpn-howto_roll_your_own_installation_package.html gives detailed information on
possible and necessary changes for different scenarios. If you want to have configuration files
deleted when OpenVPN is uninstalled, add the lines similar to the following ones:

Delete "$INSTDIR\config\client.ovpn"
Delete "$INSTDIR\config\client.crt"
Delete "$INSTDIR\config\client.pem"

As a last step we will now start the compilation progress, which is done with a simple context
menu entry generated by the NSIS installer. Right-click on the file openvpn-gui.nsi and select
the menu entry Compile NSI Script.

 224

http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html
http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html

Chapter 10

You will receive the following status window telling you about the progress. In the example
below, an installer .exe file is created as C:\nsis openvpn\openvpn-2.0.5-gui-1.0.3-
install.exe.

 225

Advanced OpenVPN Configuration

 226

You can now transfer this .exe file to all clients and install them automatically with the configuration
you provided. Installation works exactly as the standard installation described before.

However, there is a small problem here. We will need to change every client's certificate once;
otherwise all clients would have the same certificate, which is not a really safe situation. Thus, all
we have to do after having completed the steps above is:

• Transfer the .exe file to a client.
• Have it executed as administrator.
• Copy the client's certificate to the client.

You will need to use the same name for all certificates and configuration files on all clients, but
again this is no problem, because the common name of the certificate's subject line will distinguish
the clients.

Summary
In this chapter we have discussed some typical advanced configurations for OpenVPN that
showed some of its advantages. We have tunneled OpenVPN through an HTTP proxy and then we
configured a squid proxy so that we could control who is allowed to do so. Then we had a closer
look at the scripting interfaces OpenVPN offers, including lists of variables that are passed to the
scripts by OpenVPN on invocation. One such script can be an authentication plug-in like the
provided PAM authentication or better an authentication against LDAP servers. As a next step, we
configured OpenVPN to use a per-client configuration based on the client's certificate, which
would enable different configurations for different users connecting. This scenario can be made
even more complicated when combined with per-user firewall rules being activated on the VPN
server after a client connects.

distcc, a network-enabled compiler front end to GCC can be used together with OpenVPN
tunnels to have remote machines work as a team when compiling software. And finally, we looked
at automatic installation for Windows machines using the NSIS installer.

11
Troubleshooting and Monitoring

In this chapter, we will learn how to use tools to debug and monitor our VPN tunnels. We will also
learn how to scan and test the connectivity of a (VPN) server with standard networking tools.

Testing the Network Connectivity
In our typical OpenVPN setup, we have connected two networks (192.168.250.0/24 and
172.16.76.0/24) via two Linux servers that are connected to the Internet via a default gateway.
Between the two Linux servers is a tunnel that uses the virtual IPs 10.179.10.1 and 10.179.10.2.

In the connected local networks there are two Linux machines that we will use to test our tunnels
(perhaps by conveniently accessing them remotely with Secure Shell). We will now use the tools
ifconfig, route, and ping to show and test the network settings.

In our first step, we will check the local system's network address, default route, and if the default
router is pingable. The command ifconfig will print statistics of all active network interfaces:

root@sydney:~ #ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:AE:8C:D7
 inet addr:192.168.250.128 Bcast:192.168.250.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2640 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2290 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:250738 (244.8 KiB) TX bytes:273328 (266.9 KiB)
 Interrupt:10 Base address:0x1080

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:57 errors:0 dropped:0 overruns:0 frame:0
 TX packets:57 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:7907 (7.7 KiB) TX bytes:7907 (7.7 KiB)
root@sydney:~ #

This system has the IP address 192.168.250.128, and its network interface is up and running.
Obviously this machine is located in Sydney, Australia.

Now let's look at its routing entries. The command route prints all routing entries, including the
router to the Internet. A default gateway is a router that is supposed to handle all traffic not
specified by any other routing entries. In our networks, the OpenVPN server is the only router
from the internal network and is therefore configured as default gateway for the local network.

Troubleshooting and Monitoring

 228

Type route -n to receive a numeric output of the routing table of your system. Simply typing
route will work in most cases, but the command will try to resolve the IPs via DNS, which might
take a little time.

root@sydney:~ #route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.250.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 192.168.250.251 0.0.0.0 UG 0 0 0 eth0
root@sydney:~ #

We see a table where destinations, gateways, netmasks, and interfaces are listed. Every line is a
routing entry that can be read like a real sentence. An entry 0.0.0.0 simply matches every address
(source or destination, depending on the context) and is e. g. used for the default gateway.

Line three means that all traffic to the network 192.168.250.0 is sent directly to the network
interface eth0, no matter which gateway is to be used.

Line four indicates that all the traffic to any destination will be sent over the default gateway
192.168.250.251 via interface eth0.

This setup is perfectly OK for a typical network client. Let's now test if the default gateway is
reachable by pinging it from the client:

root@sydney:~ #ping 192.168.250.251
PING 192.168.250.251 (192.168.250.251): 56 data bytes
64 bytes from 192.168.250.251: icmp_seq=0 ttl=64 time=1.3 ms
64 bytes from 192.168.250.251: icmp_seq=1 ttl=64 time=0.6 ms
64 bytes from 192.168.250.251: icmp_seq=2 ttl=64 time=0.4 ms

--- 192.168.250.251 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.7/1.3 ms
root@sydney:~ #

It works. The default gateway (our OpenVPN server) answers the ping requests from our client. If
it doesn't in your setup, check the firewall rules on this server as to whether they allow traffic from
the internal network to the firewall itself. If you are unsure, it may be a good idea to temporarily
stop the firewall services.

Now let's try the same on the client in the other network (obviously in Germany):
root@munich:~ #ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:21:07:FC
 inet addr:172.16.76.128 Bcast:172.16.76.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2399 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2715 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:345146 (337.0 KiB) TX bytes:271839 (265.4 KiB)
 Interrupt:10 Base address:0x1080

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:8 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:772 (772.0 B) TX bytes:772 (772.0 B)

Chapter 11

root@munich:~ #route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.76.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 172.16.76.251 0.0.0.0 UG 0 0 0 eth0
root@munich:~ #ping 172.16.76.251
PING 172.16.76.251 (172.16.76.251): 56 data bytes
64 bytes from 172.16.76.251: icmp_seq=0 ttl=64 time=2.0 ms
64 bytes from 172.16.76.251: icmp_seq=1 ttl=64 time=0.5 ms
64 bytes from 172.16.76.251: icmp_seq=2 ttl=64 time=0.5 ms

--- 172.16.76.251 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.5/1.0/2.0 ms
root@munich:~ #

Network configuration and routing are correct, and pinging the VPN server works.

On Microsoft operating systems you will have to type ping /t for persistent pings,
ipconfig for network data, and /all route print to receive the routing table.

Checking Interfaces, Routing, and Connectivity on
the VPN Servers
In our next step we will have a close look at the network settings on the VPN servers. We will use
the same tools as above, but the output will be a little more complex:

opensuse01:~ # ifconfig
eth0 Protokoll:Ethernet Hardware Adresse 00:0C:29:13:EC:48
 inet Adresse:172.16.103.2 Bcast:172.16.103.255 Maske:255.255.255.0
 inet6 Adresse: fe80::20c:29ff:fe13:ec48/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2900 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4790 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:1000
 RX bytes:759578 (741.7 Kb) TX bytes:666545 (650.9 Kb)
 Interrupt:10 Basisadresse:0x1080

eth1 Protokoll:Ethernet Hardware Adresse 00:0C:29:13:EC:52
 inet Adresse:172.16.76.251 Bcast:172.16.76.255 Maske:255.255.255.0
 inet6 Adresse: fe80::20c:29ff:fe13:ec52/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:797 errors:0 dropped:0 overruns:0 frame:0
 TX packets:421 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:1000
 RX bytes:77682 (75.8 Kb) TX bytes:42404 (41.4 Kb)
 Interrupt:9 Basisadresse:0x1400

lo Protokoll:Lokale Schleife
 inet Adresse:127.0.0.1 Maske:255.0.0.0
 inet6 Adresse: ::1/128 Gültigkeitsbereich:Maschine
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:109 errors:0 dropped:0 overruns:0 frame:0
 TX packets:109 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:0
 RX bytes:8380 (8.1 Kb) TX bytes:8380 (8.1 Kb)

 229

Troubleshooting and Monitoring

 230

tunVPN0 Protokoll:UNSPEC Hardware Adresse 00-00-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 inet Adresse:10.179.10.2 P-z-P:10.179.10.1 Maske:255.255.255.255
 UP PUNKTZUPUNKT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:1337 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1547 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:100
 RX bytes:470725 (459.6 Kb) TX bytes:181397 (177.1 Kb)
opensuse01:~ #

OK, this server seems to have to network interface cards eth0 and eth1 (with two networks
172.16.103.0/24 and 172.16.76.0/24 in addition to the OpenVPN tunnel network tunVPN0 with the
network address 10.179.10.2 and the point-to-point partner's IP 10.179.10.1. How about routing?

opensuse01:~ # route -n
Kernel IP Routentabelle
Ziel Router Genmask Flags Metric Ref Use Iface
10.179.10.1 0.0.0.0 255.255.255.255 UH 0 0 0
tunVPN0
172.16.103.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.76.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
192.168.250.0 10.179.10.1 255.255.255.0 UG 0 0 0
tunVPN0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.103.1 0.0.0.0 UG 0 0 0 eth0
opensuse01:~ #

Routing is a little more complicated here. We have two subnets connected to eth0 and eth1, and
two entries for our tunnel; everything to the virtual address 10.179.10.1 is routed via the interface
tunVPN0, likewise traffic to the subnet 192.168.250.0/24, but this is routed via the gateway
10.179.10.1. Last but not least, the default gateway of this router has the IP 172.16.103.1.
Obviously there is another network between this firewall and the Internet.

Let's now ping the point-to-point partner of this machine. We could see from the aforementioned
interface list that this machine has the virtual IP 10.179.10.2, and the VPN partner has the IP
10.179.10.1. If our tunnel is working, it should be possible to ping through the tunnel:

opensuse01:~ # ping 10.179.10.1
PING 10.179.10.1 (10.179.10.1) 56(84) bytes of data.
64 bytes from 10.179.10.1: icmp_seq=1 ttl=64 time=1.77 ms
64 bytes from 10.179.10.1: icmp_seq=2 ttl=64 time=1.50 ms
64 bytes from 10.179.10.1: icmp_seq=3 ttl=64 time=1.42 ms
64 bytes from 10.179.10.1: icmp_seq=4 ttl=64 time=1.44 ms

--- 10.179.10.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3013ms
rtt min/avg/max/mdev = 1.425/1.535/1.770/0.141 ms
opensuse01:~ #

It's working. Please note that the time taken to answer a ping will be significantly higher through
the tunnel than for a local or direct ping.

Now let's do the same tests the other way around. We will analyze the network and routing of the
Sydney server and try to ping to Munich through the tunnel:

debian01:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:99:7B:CA
 inet addr:172.16.247.2 Bcast:172.16.247.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:7735 errors:0 dropped:0 overruns:0 frame:0
 TX packets:11012 errors:0 dropped:0 overruns:0 carrier:0

Chapter 11

 collisions:0 txqueuelen:1000
 RX bytes:924335 (902.6 KiB) TX bytes:1714169 (1.6 MiB)
 Interrupt:18 Base address:0x1080

eth1 Link encap:Ethernet HWaddr 00:0C:29:99:7B:D4
 inet addr:192.168.250.251 Bcast:192.168.250.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:490 errors:0 dropped:0 overruns:0 frame:0
 TX packets:468 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:47652 (46.5 KiB) TX bytes:43728 (42.7 KiB)
 Interrupt:19 Base address:0x1400

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

tunVPN0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00
 inet addr:10.179.10.1 P-t-P:10.179.10.2 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:1849 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1489 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:206765 (201.9 KiB) TX bytes:483493 (472.1 KiB)

debian01:~# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.179.10.2 0.0.0.0 255.255.255.255 UH 0 0 0
tunVPN0
172.16.247.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.76.0 10.179.10.2 255.255.255.0 UG 0 0 0
tunVPN0
192.168.250.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 172.16.247.1 0.0.0.0 UG 0 0 0 eth0
debian01:~# ping 10.179.10.1
PING 10.179.10.1 (10.179.10.1) 56(84) bytes of data.
64 bytes from 10.179.10.1: icmp_seq=1 ttl=64 time=0.221 ms
64 bytes from 10.179.10.1: icmp_seq=2 ttl=64 time=0.069 ms
64 bytes from 10.179.10.1: icmp_seq=3 ttl=64 time=0.059 ms

--- 10.179.10.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 0.059/0.116/0.221/0.074 ms
debian01:~#

It worked. We have now made sure that:

• The VPN servers are reachable in their local networks.
• The OpenVPN tunnel is up and running.
• The OpenVPN tunnel is working in both directions.

Let's now enter another level of testing. We will now test if the Sydney network is reachable from
our VPN server in Munich—still using ICMP packets only. Furthermore, the program traceroute
will help us follow the route the packets take:

 231

Troubleshooting and Monitoring

opensuse01:~ # ping 192.168.250.128
PING 192.168.250.128 (192.168.250.128) 56(84) bytes of data.
64 bytes from 192.168.250.128: icmp_seq=1 ttl=63 time=1.90 ms
64 bytes from 192.168.250.128: icmp_seq=2 ttl=63 time=1.26 ms
64 bytes from 192.168.250.128: icmp_seq=3 ttl=63 time=1.57 ms

--- 192.168.250.128 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2009ms
rtt min/avg/max/mdev = 1.261/1.577/1.900/0.264 ms
opensuse01:~ # traceroute -n 192.168.250.128
traceroute to 192.168.250.128 (192.168.250.128), 30 hops max, 40 byte packets
 1 10.179.10.1 1.874 ms 8.949 ms 20.241 ms
 2 192.168.250.128 24.911 ms 35.618 ms 40.988 ms
opensuse01:~ #

Again, pinging worked fine. This indicates correct routing on the Sydney side and on the Munich
VPN server. The output of the program traceroute lists all servers the packets passed on their
way to Sydney; they were thrown into the tunnel immediately and arrived at the VPN server in
Sydney 10.179.10.1, which passed them on to the local machine, which took forty milliseconds.
Of course we can also "traceroute" our packets that go the other way, provided that the
administrator of the Debian server has installed (

 232

traceroute apt-get install traceroute).

On Microsoft operating systems the command tracert offers the same functionality as
traceroute on Linux.

Another very handy tool is "My traceroute", or mtr. Called with mtr -n 192.168.250.128, mtr
keeps running traceroute -n 192.168.250.128 command until you type q or Ctrl+C. The output
is displayed in a clear table. With this command, we can easily switch routing entries and control
the effect interactively.

Debugging with tcpdump and IPTraf
Another very handy tool to control traffic is tcpdump. As a network sniffer, tcpdump is often used
by administrators or hackers to collect the data exchanged on the network. tcpdump prints all
traffic that passes the interface given as a parameter. The following example shows the usage of
tcpdump. When called with the options -n and -i eth1, tcpdump will listen on interface eth1 and
give a numeric output (without resolving DNS):

debian01:~# tcpdump -n -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 96 bytes
21:00:16.640142 IP 192.168.250.128 > 172.16.76.128: ICMP echo request, id

Chapter 11

55298, seq 0, length 64
21:00:16.648116 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply, id 55298,
seq 0, length 64
21:00:17.678429 IP 192.168.250.128 > 172.16.76.128: ICMP echo request, id
55298, seq 256, length 64
21:00:17.680701 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply, id 55298,
seq 256, length 64
21:00:18.668565 IP 192.168.250.128 > 172.16.76.128: ICMP echo request, id
55298, seq 512, length 64
21:00:18.670722 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply, id 55298,
seq 512, length 64
21:00:19.688618 IP 192.168.250.128 > 172.16.76.128: ICMP echo request, id
55298, seq 768, length 64
21:00:19.690836 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply, id 55298,
seq 768, length 64

As we can see, there were four ICMP echo request messages sent from 192.168.250.128 to
172.16.76.128. All of them were answered by the machine 172.16.76.128 with the appropriate
"echo reply" message.

Now we can use tcpdump on every machine in the chain of routers between the two clients in
order to track the ICMP packets. For example, if a firewall is blocking the ICMP messages, then
no PC behind before this firewall will receive any the requests or replies, whereas the machines
the firewall will do.

debian01:~# tcpdump -ni tunVPN0
tcpdump: WARNING: arptype 65534 not supported by libpcap - falling back to
cooked socket
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on tunVPN0, link-type LINUX_SLL (Linux cooked), capture size 96
bytes
21:07:53.800707 IP 172.16.76.128 > 192.168.250.128: ICMP echo request, id
19971, seq 9472, length 64
21:07:53.801608 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply, id 19971,
seq 9472, length 64
21:07:54.799266 IP 172.16.76.128 > 192.168.250.128: ICMP echo request, id
19971, seq 9728, length 64
21:07:54.800531 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply, id 19971,
seq 9728, length 64
21:07:55.800302 IP 172.16.76.128 > 192.168.250.128: ICMP echo request, id
19971, seq 9984, length 64
21:07:55.801296 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply, id 19971,
seq 9984, length 64
21:07:56.752248 IP 172.16.76.128 > 192.168.250.128: ICMP echo request, id
19971, seq 10240, length 64
21:07:56.752876 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply, id 19971,
seq 10240, length 64

8 packets captured
16 packets received by filter
0 packets dropped by kernel
debian01:~#

You see, tcpdump runs also on the tunnel interfaces, but some features won't work with TUN or
TAP interfaces. Also because the network interface will be run in promiscuous mode, tcpdump
will need root privileges. Furthermore, the information returned will be scarce in most switched
networks, where only local packets can be displayed.

Another helpful tool is IPTraf (on Debian installed with apt-get install iptraf). IPTraf collects
and displays packets and statistical data on selected interfaces. IPTraf comes with many options,
but we will only focus on its list view.

 233

Troubleshooting and Monitoring

Enter iptraf and hit return four times. You will get a window as depicted in the following
screenshot:

In the upper half of the window,

 234

TCP connections are displayed. , UDP ICMP, and other
connections can be found in the lower half. In the example above, we can recognize an SSH
session (from which IPTraf was started), ICMP packages between the Sydney and Munich client
PCs, and the UDP packages encapsulating these ICMP packages.

XHit twice and Enter once to quit IPTraf.

Using OpenVPN Protocol and Status Files for
Debugging
A very convenient method to watch tunnel traffic is setting the verbosity of OpenVPN to the fifth
level. This is simply done with the entry verb 5 in its configuration file. The following output
shows an excerpt of OpenVPN's protocol file (as specified in the OpenVPN configuration file):

Fri Dec 9 21:05:15 2005 us=51912 Data Channel Encrypt: Cipher 'AES-256-CBC'
initialized with 256 bit key
Fri Dec 9 21:05:15 2005 us=51944 Data Channel Encrypt: Using 160 bit message
hash 'SHA1' for HMAC authentication
Fri Dec 9 21:05:15 2005 us=51962 Data Channel Decrypt: Cipher 'AES-256-CBC'
initialized with 256 bit key
Fri Dec 9 21:05:15 2005 us=52033 Data Channel Decrypt: Using 160 bit message
hash 'SHA1' for HMAC authentication
Fri Dec 9 21:05:15 2005 us=131924 Control Channel: TLSv1, cipher TLSv1/SSLv3
DHE-RSA-AES256-SHA, 2048 bit RSA
WRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWR
wrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwr
WRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWR
wrWRwrWRwrWRwrW (...)

Chapter 11

In the last lines we find the detailed statistics of all tunnel traffic. Upper cased letters stand for TCP
or UDP datagrams on the real interface, encapsulating OpenVPN traffic, and lower case letters
indicate traffic on the TUN/TAP interface. Unsurprisingly, r is for read and w is for write. Thus a
successful ping command through the tunnel will always cause an entry like WRwr or vice versa.

Another file that our sample setup writes information to is the status file. Depending on the time
period given as a parameter, OpenVPN will update the information in this file on a regular basis.
In the example the file was /var/log/openvpn/feilner-it.status; the command cat can show
us the content of this file:

debian01:~# cat /var/log/openvpn/feilner-it.status
OpenVPN STATISTICS
Updated,Fri Dec 9 21:26:53 2005
TUN/TAP read bytes,1102504
TUN/TAP write bytes,806453
TCP/UDP read bytes,1302857
TCP/UDP write bytes,1588558
Auth read bytes,808809
pre-compress bytes,55193
post-compress bytes,53110
pre-decompress bytes,1449
post-decompress bytes,2076
END
debian01:~#

We find detailed statistical data. If you run into problems with OpenVPN, it may be a good idea to
check this file to find out if the values make sense, or if there is either too much or missing traffic
on either side, for example, if it gets lost or the routing is wrong.

Depending on your system and logging setup, there may also be entries in your system protocol,
like those here on this SuSE system:

opensuse01:~ # tail /var/log/messages
Dec 2 17:50:09 opensuse01 openvpn[11661]: Local Options String: 'V4,dev-type
tun,link-mtu 1545,tun-mtu 1500,proto UDPv4,ifconfig 10.179.11.1
10.179.11.2,comp-lzo,cipher BF-CBC,auth SHA1,keysize 128,secret'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Expected Remote Options String:
'V4,dev-type tun,link-mtu 1545,tun-mtu 1500,proto UDPv4,ifconfig 10.179.11.2
10.179.11.1,comp-lzo,cipher BF-CBC,auth SHA1,keysize 128,secret'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Local Options hash (VER=V4):
'59c313f6'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Expected Remote Options hash
(VER=V4): '36b1f115'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Output Traffic Shaping initialized
at 20000 bytes per second
Dec 2 17:50:09 opensuse01 openvpn[11674]: Socket Buffers: R=[113664->131072]
S=[113664->131072]
Dec 2 17:50:09 opensuse01 openvpn[11674]: UDPv4 link local (bound):
[undef]:5001
Dec 2 17:50:09 opensuse01 openvpn[11674]: UDPv4 link remote:
172.16.247.2:5001

This shows that another VPN tunnel has been created; OpenVPN is listening on UDP port 5001.

 235

Troubleshooting and Monitoring

 236

Scanning Servers with Nmap
Nmap is a port scanner that can be used to determine whether a UDP or TCP port on a machine is
open, and whether there is a server process accepting connections. Nmap can also find out if a
firewall is protecting the machine scanned, and Nmap can scan whole networks. Let's scan the
local client PC (which is obviously not protected by a firewall...):

opensuse01:~ # nmap 172.16.76.128

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02 18:02 CET
Interesting ports on localhost (172.16.76.128):
(The 1661 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
68/tcp open dhcpclient
MAC Address: 00:0C:29:21:07:FC

Nmap finished: 1 IP address (1 host up) scanned in 1.773 seconds

There are two ports open on this system; port 1661 and other scanned ports are closed. If there
were a firewall on this system, then scanning would not be that easy, because most firewalls detect
scans and can prevent them. But there are many options to Nmap, including stealth scans, altering
sender IPs, and many more—the manual page is really good.

We will now scan one of our OpenVPN servers to find out if our VPN port (5000) can be reached.
The command nmap -sU <IP> -p <Port> will make Nmap scan only if the UDP port on the
machine with the given IP address is open:

opensuse01:~ # nmap -sU 172.16.247.2 -p 5000

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02 18:06 CET
Note: Host seems down. If it is really up, but blocking our ping probes, try -
P0
Nmap finished: 1 IP address (0 hosts up) scanned in 2.067 seconds
opensuse01:~ # nmap -P0 -sU 172.16.247.2 -p 5000

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02 18:06 CET
Interesting ports on debian01.feilner-it.home (172.16.247.2):
PORT STATE SERVICE
5000/udp open|filtered UPnP

Nmap finished: 1 IP address (1 host up) scanned in 2.039 seconds
opensuse01:~ #

You saw how our Shorewall firewall did not reveal information about the port when we scanned it
in the first try. However, Nmap already gave us a hint: add the parameter -P0 to act even more
stealthily. With this option, Nmap does not ping the hosts it scans before really scanning them.
Some firewalls recognize this as a typical behavior of port scanners and block it. The second try,
however revealed that the UDP port 5000 is filtered (by a firewall). This means: firewall rules may
be protecting and limiting access to this port, but it is open.

On Windows the program "Angry IP Scanner" will probably be your first choice for scanning.

Chapter 11

Monitoring Tools
There are many tools that provide detailed statistics on network interfaces. Two very easily
installed monitoring tools with great functions are ntop and Munin.

ntop
ntop monitors a network and may in some states be illegal because it creates detailed records of
connections between IP addresses. Furthermore, it offers a nice browser GUI and does not need a
running web server. ntop installs easily on Debian.

Enter apt-get install ntop and choose the interface you want to monitor. After software
installation, type ntop -A, and enter an administrator password for ntop's admin account. Now type
/etc/init.d/ntop start and point a browser to the http://IP:3000 of this system (ntop is
running on port 3000). You will get a feature-rich window with a growing amount of information,
especially if ntop has been for running some time:

ntop offers many possibilities. We can save the data to a database, access to a database can be
secured and monitored, interfaces can be switched online, and many more possibilities.

 237

Troubleshooting and Monitoring

Munin
Another helpful statistic tool is Munin. Munin consists of a client and a server process that collect
data that is provided from an almost arbitrary source on Linux (or even Windows) systems. The
example below shows the standard Munin interface after installation as documented on
http://munin.sf.net. Unfortunately, Munin needs a web server like Apache, but apart from this,
the installation is very easy. Munin is configured from files in /etc/munin/, and makes use of a
great number of plug-ins; even more can be downloaded.

Since there are only a few requirements for a Munin plug-in, we can easily create our own
OpenVPN monitoring plug-in. Such a plug-in must be executable, and return data in the format of:

router:/usr/share/munin/plugins # /etc/munin/plugins/if_eth0
down.value 1777836059
up.value 94615124
router:/usr/share/munin/plugins #

As an example, on http://rodolphe.quiedeville.org/hack/openvpn there is a simple plug-in
that reports the number of users connected to an OpenVPN server. I leave it up to you to imagine
the possibilities of such plug-ins when combined with samba, iptables, OpenVPN, and more. Just
think of the OpenVPN status file and the information it provides.

 238

Chapter 11

Hints to Other Tools
There is an abundance of networking tools concerning monitoring, sniffing, and scanning. Two of
my favorites are Cacti and Nagios. Cacti is a monitoring tool similar to Munin, but it seems more
powerful. Nagios is a tool designed to monitor machines and services.

With Nagios you can not only determine if a server is still answering pings, but can also check for
services by accessing them (using e.g. the samba or HTTP protocols) and trigger actions when the
service is not available. You can have your Nagios machine send you an SMS if your OpenVPN
tunnel is down, or if the management interface is not reacting.

Summary
In this chapter we have learned how to check our OpenVPN and networking setup step-by-step using
standard Linux tools and evaluating their output. With tools like ifconfig, ping, traceroute, and
mtr, we could analyze the flow of datagrams between the VPN servers and the connected networks.
Programs like tcpdump, IPTraf, ntop, and Munin will give us detailed information about the current
traffic or statistical breakdowns of it. The first place to look for troubleshooting should always be the
log file of OpenVPN itself—especially at a higher level of verbosity.

 239

A
Internet Resources

VPN Basics
The baseline protection manual of the German BSI:

http://www.bsi.bund.de/english/gshb/index.htm.

http://www.bsi.bund.de/english/.

Handbook of Information Security Management:

http://www.cccure.org/Documents/HISM/ewtoc.html.

IT Baseline Protection as published by the German BSI (but in English):

http://www.bsi.bund.de/english/gshb/index.htm.

http://www.bsi.bund.de/english/.

The IT-Sec Handbook—concise security hints:

http://www.cccure.org/Documents/HISM/ewtoc.html.

Wikipedia articles are good to start with and contain lots of interesting links:

http://en.wikipedia.org/wiki/Symmetric_encryption.

http://en.wikipedia.org/wiki/Asymmetric_encryption.

http://en.wikipedia.org/wiki/Cryptography.

http://en.wikipedia.org/wiki/Secure_Sockets_Layer.

http://en.wikipedia.org/wiki/Public_key_certificate.

Windows Security and SSL:

http://www.windowsecurity.com/articles/Secure_Socket_Layer.html.

The TLS protocol as specified by the IETF:

http://www.ietf.org/rfc/rfc2246.txt.

Internet Resources

 242

A concise but easy explanation of the OSI model can be found in the Wikipedia:

http://en.wikipedia.org/wiki/OSI_model.

A very good overview on Layer 2 Forwarding (L2F) can be found here:

http://www.javvin.com/protocolL2F.html.

The Internet Engineering Task Force details can be found at:

http://www.ietf.org.

Read the IPsec article in Wikipedia:

http://en.wikipedia.org/wiki/IPsec.

The Linux IPsec Howto:

http://www.ipsec-howto.org/t1.html.

An example for a TLS/SSL web-based SSL/TLS VPN solution:

http://sourceforge.net/projects/sslexplorer/.

http://3sp.com/showSslExplorer.do.

OpenVPN Resources
An interview with James Yonan on Linuxsecurity.com:

http://www.linuxsecurity.com/content/view/117363/49/.

Community: The project website of OpenVPN

http://openvpn.net/.

OpenVPN changelog and release notes:

http://openvpn.net/changelog.html.

http://openvpn.net/relnotes.html.

Shorewall Firewall:

http://www.shorewall.net/OPENVPN.html.

http://home.arcor.de/u.altinkaynak/openvpn.html.

OpenVPN forum:

http://www.vpnforum.de/.

The mailing lists:

http://openvpn.net/mail.html.

The SSL/TLS Cryptographic Libraries website:

http://www.openssl.org/.

Appendix A

The website of the Transport Layer Security Charter by the TLS Working Group:

http://www.ietf.org/html.charters/tls-charter.html.

The universal TUN/TAP driver:
http://vtun.sourceforge.net/tun/.

Installing the OpenVPN LZO project:

http://www.oberhumer.com/opensource/lzo/.

For Microsoft Windows operating systems you have to download the binary .exe file from:

http://openvpn.net/download.html.

Or the package containing a graphical user interface from:

http://openvpn.se/.

Daily (unstable!) snapshots of OpenVPN Source Code:

http://sourceforge.net/cvs/?group_id=48978.

Mac Tool:

http://www.tunnelblick.net/README.txt.

Detailed installation instructions for Mac OS 10.3:

http://www.helsinki.fi/atk/english/hy-ppp/hy-vpn/hy-vpn-mac.html.

Homepage of the Tunnelblick OpenVPN GUI for Macintosh:

http://www.tunnelblick.net/.

Open SUSE Support Database:
http://en.opensuse.org/SDB:SDB.

Novell's SuSE site:

http://www.novell.com/linux/suse/.

Redhat:

www.redhat.org.

www.fedora.org.

Redhat (Fedora frequently asked questions):

http://www.fedorafaq.org/.

Yum:

http://linux.duke.edu/projects/yum/.

Suitable configurations file for yum:

http://www.fedorafaq.org/samples/yum.conf.

 243

http://en.opensuse.org/SDB:SDB

Internet Resources

 244

OpenVPN Fedora RPMs:

http://dag.wieers.com/packages/openvpn/.

OpenVPN SuSE RPMs:

ftp://ftp.suse.com/.

Debian: A detailed Howto on configuring one of your HTTP or FTP servers to act as a Debian
repository can be found here:

http://www.debian.org/doc/manuals/repository-howto/repository-howto.en.html.

The Debian New Maintainers' Guide—create Debian packages:

http://www.debian.org/doc/manuals/maint-guide/index.en.html.

Detailed information about the Debian packages for OpenVPN can be found at:

http://packages.debian.org/stable/net/openvpn.

Carpaltunnel is a script to manage tunnels and their certificates. The Debian package can be
found here:

http://packages.debian.org/stable/net/carpaltunnel.

BSD:

http://blog.innerewut.de/articles/2005/07/04/openvpn-2-0-on-openbsd.

http://blog.innerewut.de/articles/2005/07/08/improving-openvpn-s-security.

FreeBSD:

http://www.freshports.org/security/openvpn/.

http://openvpn.net/wiki/Platforms:FreeBSD.

NetBSD:

http://pkgsrc.se/net/openvpn.

OpenBSD:

http://software.newsforge.com/software/05/11/21/175249.shtml?tid=92&tid=78.

http://www50.brinkster.com/dachee/OpenVPN.htm.

Ports:

http://openvpn.net/ports.html.

Kernel compilation Howto:

www.linuxhaven.de/dlhp/HOWTO/DE-Kernel-HOWTO.html.

http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html.

Appendix A

Kernel sources:

http://www.kernel.org/.

OpenVPN and Debian:

http://www.debian-administration.org/articles/35.

OpenVPN and SuSE:

http://freifunk.net/wiki/OpenVPN (German).

http://sarwiki.informatik.hu-berlin.de/OpenVPN_(deutsch) (German).

OpenVPN and Redhat:

http://mia.ece.uic.edu/~papers/volans/openvpn.html.

Installing OpenVPN Devices run by OpenWrt:

http://martybugs.net/wireless/openwrt/openvpn.cgi.

Configuration
Information on the init system of Debian systems:

http://www.debian.org/doc/debian-policy/ch-opersys.html#s-sysvinit.

Troubleshooting connection problems on Windows:

http://www.helsinki.fi/atk/english/hy-ppp/hy-vpn/win_trouble.html.

WinSCP—an SSH/SCP client for Windows:

http://winscp.net/ - Freeware SFTP and SCP client for Windows.

The dos2unix converter:

http://www.megaloman.com/~hany/software/hd2u/ - Hany's Dos2Unix convertor.

Detailed information about the Diffie-Hellman key exchange algorithm:

http://www.rsasecurity.com/rsalabs/node.asp?id=2248.

The Network Time Protocol:

http://www.ntp.org/.

Public Key Infrastructure (X.509) Working Group:

http://www.ietf.org/html.charters/pkix-charter.html.

Wikipedia on X509 certificates:

http://en.wikipedia.org/wiki/X509.

Information on a PKI using OpenSSL:

http://www.rajeevnet.com/crypto/ca/ca-paper.html.

 245

Internet Resources

 246

Online manual page of the stable version of OpenVPN:

http://openvpn.net/man.html.

Online manual page of the unstable version:

http://openvpn.net/man-beta.html.

The Webmin project website:

http://www.webmin.com.

Development version of Webmin (new Shorewall module):

http://webmin.com/devel.html.

Shoreline Firewall (Shorewall) project:

http://www.shorewall.net/.

Linux iptables Howto:

http://www.linuxguruz.com/iptables/howto/.

Hardening OpenVPN security:

http://openvpn.net/howto.html#security.

XCA SourceForge project website:

http://sourceforge.net/projects/xca.

OpenCA Research and Development Labs:

http://www.openca.org/.

The TinyCA project:

http://tinyca.sm-zone.net/.

A Guide to basic RSA Key Management:

http://openvpn.net/easyrsa.html.

Certificate management and installation with OpenSSL:

http://www.gagravarr.org/writing/openssl-certs/.

Securing distcc with chroot and OpenVPN:

http://www.northernsecurity.net/articles/distcc.html.

NSIS software installer for Windows:

http://nsis.sourceforge.net/Main_Page.

How to roll your own OpenVPN Windows installation package:

http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html.

Appendix A

Connecting to an OpenVPN server via an HTTP proxy:

http://openvpn.net/howto.html#http.

Pushing DHCP options to clients:

http://openvpn.net/howto.html#dhcp.

Routing all client traffic (including web traffic) through the VPN:

http://openvpn.net/howto.html#redirect.

Scripts and More
Environmental variables (German) for OpenVPN:

http://www.pronix.de/pronix-991.html.

Distributed compiling with distcc:

http://distcc.samba.org/.

http://www.debian-administration.org/articles/157.

Bridging Howtos:

http://openvpn.net/bridge.html.

http://www.pavelec.net/adam/openvpn/bridge/.

Information for automatic installation:

http://www.openvpn.se/files/nsis/nsis205.exe.

http://openvpn.se/files/howto/openvpn-howto_roll_your_own_installation_package.html.

http://www.openvpn.se/files/install_packages_source/.

Network Tools
My traceroute (mtr):

http://www.bitwizard.nl/mtr/index.html.

tcpdump:

http://www.tcpdump.org/.

Windump: tcpdump for Windows:

http://www.winpcap.org/windump/.

IPTraf:

http://iptraf.seul.org/.

 247

Internet Resources

 248

Angry IP Scanner (Windows):

http://www.angryziber.com/ipscan/.

Nmap:

http://www.insecure.org/nmap/index.html.

ntop:

http://www.ntop.org/ntop.html.

Munin monitoring server:

http://munin.projects.linpro.no/.

Nagios:

http://www.nagios.org/.

Cacti:

http://www.cacti.net/.

Howtos
The Linux file server Howto (includes networking basics and troubleshooting):

http://linux.vyrax.com/.

IPTraf:

http://iptraf.seul.org/2.7/manual.html.

Monitoring with tcpdump:

http://www-iepm.slac.stanford.edu/monitoring/passive/tcpdump.html.

TCP/IP and tcpdump, pocket reference guide:

http://www.sans.org/resources/tcpip.pdf.

Wikipedia on tcpdump:

http://en.wikipedia.org/wiki/Tcpdump.

Understanding traceroute and ping results:

http://www.visualware.com/resources/tutorials/tracert.html.

A short Nmap Howto:

http://www.tldp.org/LDP/LG/issue56/flechtner.html.

Munin Howto for Debian:

http://www.debian-administration.org/articles/229.

Appendix A

Howto on writing your own Munin plug-ins:

http://munin.projects.linpro.no/wiki/HowToWritePlugins.

Openvpn GUIs
OpenVPN GUI for Windows:

http://openvpn.se/.

OpenVPN GUI for Linux, written in Gambas:

http://www.linprofs.com/modules/news/article.php?storyid=8.

OpenVPN-Admin, a multi-platform OpenVPN GUI:

http://sourceforge.net/projects/openvpnadmin/.

KVpnc, a KDE VPN GUI for Cisco, IPSec, PPTP, and OpenVPN:

http://home.gna.org/kvpnc/en/index.html.

OpenVPN control, a graphical management interface:

http://sourceforge.net/project/showfiles.php?group_id=152302.

Tunnelblick—a GUI for MacOS X:

http://www.tunnelblick.net/.

A promising OpenVPN Webmin module:

http://www.openit.it/index.php/openit_en/soluzioni_gpl/openvpnadmin.

 249

Index

A
access directives, Squid, 211
access lists, Squid, 211
advanced installation, OpenVPN, 69
advantages, OpenVPN, 27
apt command, OpenVPN Debian installation, 58
apt-cache search <string> command, Debian, 62
apt-cache show <package> command, Debian, 62
apt-get dist-upgrade command, Debian, 61
apt-get install <package> command, Debian, 61
apt-get remove <package> command, Debian, 61
apt-get update command, Debian, 61
apt-get upgrade command, Debian, 61
aptitude software, Debian, 62
authentication methods, OpenVPN

configuration, 212
auth-user-pass configuration parameter, 213
auth-user-pass-verify configuration

parameter, 212
automatically running OpenVPN

init scripts, 96
Linux, 95
runlevels, 96
Windows, 94

auto-proxy parameter, OpenVPN proxy
configuration, 210

B
branches, company, 5
bridge-utils package, 219
bridging, OpenVPN, 219

C
CA certificates, 109
Certificate Authority, SSL/TSL security, 23
certificate exporting, TinyCA2, 207
certificate parameters, OpenVPN, 134
Certificate Revocation List (CRL), VPN

security, 25

certificate revoking
TinyCA2, 207
XCA, 200

Certificate Wizard, XCA, 195
certificates, Linux

certificate authority, 122
Diffie-Hellman key, 122
easy-rsa, 121
key pair, creating a, 123
variables, preparing, 122

certificates, OpenVPN
creating, 109
easy-rsa on Linux, 121
easy-rsa on Windows XP, 110
troubleshooting, 124

certificates, Windows XP
certificate authority, building, 113
Diffie-Hellman key, creating, 112
distributing files, VPN partners, 117
easy-rsa, 110
OpenVPN configuration, 119
server and client keys, 114
setting variables in vars.bat, 111

client mode parameters, OpenVPN, 151
client parameter, client configuration, 215
client-connect option, scripting, 212
client-specific configurations, 214
compilation, distributed, 218
comp-lzo option, OpenVPN configuration file,

156
configuration, OpenVPN

authentication methods, 212
automatic Windows client installation, 222
client configuration directories, 214
distributed compilation with Distcc, 218
ethernet bridging, 219
individual firewall rules, 216
online resources, 245
scripting, 211
single-client access, 155
tunneling a proxy server, 209
Windows, 77

configuration, OpenVPN networking, 34

CONNECT HTTP method, 209
connecting Windows and Linux

exchanging files, 86
WinSCP, 87

connection, sample, 80
crypto system parameters, OpenVPN, 144

D
deb file format, 60
DEB packages, building and distributing, 72
Debian, OpenVPN installation

installation using apt, 58
list of files installed, 64
package management commands, 61

debugging parameters, OpenVPN, 133
debugging, troubleshooting, 232
default gateway, 227
default policies, Shorewall Firewall module, 169
Denial of Service (DOS), 156
dev tunVPN0 option, OpenVPN configuration

file, 156
digital signature, SSL/TLS encryption, 20
distccd daemon, 218
distributed compilation with Distcc, 218
DOS attack protection, 156
dos2unix utility, 90
down option, scripting, 212
downloading OpenVPN, 40
dpkg -i <file> command, Debian, 62
dpkg -l <package> command, Debian, 62
dpkg -L <package> command, Debian, 62
dpkg -S <file> command, Debian, 62
dpkg-reconfigure command, Debian, 61
drivers, OpenVPN networking, 32

E
easy-rsa, generating certificates

Linux, 121
Windows XP, 110

eavesdropping, VPN security, 19
encryption key, generating an, 78
encryption parameters, OpenVPN, 143
encryption, VPN security

assymetric, 20
symmetric, 18

environmental variables, OpenVPN, 212
ethernet bridging, OpenVPN, 219
exporting certificates, TinyCA2, 207

F
features, OpenVPN, 27
firewall rules, individual, 216
firewalls, OpenVPN networking, 8, 33
float option, OpenVPN configuration file, 156
frames, ethernet network, 10
FreeBSD, OpenVPN installation

BSD port installation, 68
newer OpenVPN version installation, 66
pkg_add command, 64
port system installation, 66
sysinstall command, 66

G
General Routing Encapsulation (GRE), 13
Generate a static OpenVPN key, 78
GNU Compiler Collection (GCC), 218
GRE, 13
group parameters, OpenVPN, 141
GUIs, online resources, 249

H
history, OpenVPN

Version 1, 29
Version 2, 31

http_access directives, Squid, 211
http-proxy parameter, OpenVPN proxy

configuration, 210
http-proxy-option type parameter, OpenVPN

proxy configuration, 210
http-proxy-retry parameter, OpenVPN proxy

configuration, 210
http-proxy-timeout parameter, OpenVPN

proxy configuration, 210

I
IETF, 14
ifconfig command, troubleshooting, 227
ifconfig option, OpenVPN configuration file, 156
ifconfig, configuration parameter, 82
IKE, 19
importing CA certificates

TinyCA2, 202
XCA, 191

252

init scripts
managing, 98
Webmin, 99

installation, OpenVPN
advanced methods, 69
automatic installation for Windows clients, 222
building a DEB package, 72
building an RPM file, 71
Debian, 58
Debian packages, 60
FreeBSD, 64
installation using rpmbuild, 71
internet links and guidelines, 75
Mac OS X, 46
prerequisites, 39
Redhat Fedora, 52
RPM-based systems, 55
SuSE Linux, 48
troubleshooting, 69
Windows, 41
XCA, 187

interfaces configuration file, Webmin, 174
Internet Engineering Task Force (IETF), 14
Internet Key Exchange (IKE) protocol, 19
Internet Protocol (IP), 10
internet resources. See resources, online
Internetwork Packet Exchange (IPX) protocol, 13
IP, 10
ipchange option, scripting, 212
IPCop, Linux firewalls, 34
IPsecVPN vs OpenVPN, 35
iptables program, Linux firewalls, 34
IPTraf tool, troubleshooting, 233

K
keepalive parameter, OpenVPN configuration

file, 157
key lifetime, symmetric encryption, 18

L
L2F, 13
L2sec, 14
L2TP, 13
Layer 2 Forwarding (L2F), 13
Layer 2 Security Protocol (L2sec), 14
Layer 2 Tunneling Protocol (L2TP), 13
layers, IP model, 10
layers, OSI model, 10

LDAP administration tools, 213
ldapwhoami command, username/password

pairs testing, 213
learn-address option, scripting, 211
learn-address parameter, scripting, 216
Linux firewalls, 157
Linux kernel support for TUN/TAP devices,

enabling, 72
Linux to Windows connection, 86
logging parameters, OpenVPN, 140
LZO library installation, 56

M
Mac OS X Installation, OpenVPN

installation wizard, 47
testing, 47
Tunnelblick, 46

make command, advanced OpenVPN
installation, 70

management interface parameters, OpenVPN,
141

management interface, OpenVPN Version 2
features, 31

Man-in-the-Middle attacks, VPN security, 19
Menuconfig command, enabling TUN/TAP

support, 73
Microsoft Windows XP firewall, OpenVPN, 182
monitoring tools

Munin, 238
ntop, 237

multi-client support, OpenVPN Version 2
features, 31

Munin, monitoring tools, 238

N
NAT, 14
Network Address Translation (NAT), 14
network connectivity, troubleshooting, 227
Network Interface Card (NIC), 10
network interfaces, OpenVPN on Microsoft

Windows, 84
network packet, 10
network settings, troubleshooting, 229
network tools, online resources, 247
networking concepts, 10
networking layer, OpenVPN, 32
networking with OpenVPN

advantages, 33

253

configuration, 34
drivers, 32
firewalls, 33
problems, 35

NIC, 10
Nmap, troubleshooting, 236
ntop, monitoring tools, 237
Nullsoft Scriptable Install System (NSIS), 222

O
online resources, 241
Open DataBase command, XCA, 190
Open Systems Interconnection (OSI)

specification, 10
Open XCA Database dialog, XCA, 190
OpenVPN

advantages, 27
authentication methods, 212
automatic installation, Windows clients, 222
comparision with IPsecVPN, 35
Debian installation, 58
documentation, 36
download software, 40
ethernet bridging, 219
features, 27
FreeBSD installation, 64
GUI resources, 249
history, 28
Mac OS X installation, 46
networking layer, 32
online resources, 242
RPM-based systems installation, 55
running automatically, 94
scripting, 211
security, 155
static key, generating a, 78
SuSE Linux installation, 48
tunneling a proxy server, 209
Version 1 features, 29
Version 2 features, 31
Windows installation, 41

openvpn command line tool
controlling tunnel, 132
data compression, 130
debugging output, 133
parameters, 128
parameters, static key client, 130
syntax, 127
usage, 129

OpenVPN configuration file directory option, 81
OpenVPN configuration file directory option,

OpenVPN on Windows, 78
OpenVPN Connection (sample) window, 80
OpenVPN GUI is already running window, 79
OpenVPN GUI option, OpenVPN on

Windows, 78
OpenVPN log file directory option, OpenVPN

on Windows, 78
OpenVPN on Microsoft Windows

configuration, 77
generating static encryption key, 78
network interfaces, 84
sample configuration file, 81
sample connection, 80
tunnel, starting and testing, 83

OpenVPN Sample Configuration Files option,
OpenVPN on Windows, 78

OpenVPN service, running automatically, 94
OpenVPN vs IPsecVPN, 35
OSI, 10
OSI layer 2 protocols, 13
OSI layer 3 protocols, 14
OSI layer 4 protocols, 15
overhead, 12

P
packaging data, OpenVPN networking, 32
parameters, certificates

ca, 134
cert, 134
dh, 134
key, 135
tls-client, 135
tls-server, 135

parameters, client configuration
ccd-exclusive, 150
client-config-dir, 150
client-connect, 151
client-disconnect, 151
ifconfig-push, 151
iroute, 151

parameters, client mode
auth-retry, 152
auth-user-pass, 152
client, 152
pull, 152

parameters, encryption
auth, 143

254

ca, 143
cert, 144
cipher, 143
crl-verify, 144
dh, 143
key, 144
keysize, 143
no-iv, 144
no-replay, 144
pkcs12, 144
secret, 143
test-crypto, 144
tls-client, 143
tls-server, 143

parameters, logging
log, 140
log-append, 140
status, 140

parameters, management interface
management, 141
--management-hold, 141
--management-log-cache, 141

parameters, OpenVPN
connect-retry-max, 135

parameters, proxies
auto-proxy, 143
http-proxy, 143
http-proxy-retry, 143
http-proxy-timeout, 143
socks-proxy, 143
socks-proxy-retry, 143

parameters, push
push, 152

parameters, routing
ifconfig, 137
redirect-gateway, 138
route, 137
route-delay, 138
route-gateway, 138
route-up, 138

parameters, scripting
down, 140
down-pre, 140
ipchange, 140
route-up, 140
up, 140
up-delay, 140
up-restart, 140

parameters, server
<mode>, 148
auth-user-pass-verify, 149
client-cert-not-required, 149

client-to-client, 149
connect-freq, 149
duplicate-cn, 149
ifconfig-pool, 149
ifconfig-pool-persist, 149
learn-address, 149
max-clients, 149
max-routes-per-client, 149
push, 148
server, 147
server-bridge, 148
tmp-dir, 149

parameters, SSL
engine, 145
show-ciphers, 145
show-digests, 145
show-engines, 145
show-tls, 145

parameters, troubleshooting
mute, 133
verb, 133

parameters, tunnel control
inactive, 138
keepalive, 138
persist-key, 132
persist-local-ip, 139
persist-remote-ip, 139
persist-tun, 132
ping, 132
ping-exit, 138
ping-restart, 132
ping-timer-rem, 132
resolv-retry, 132

parameters, tunnel options
connect-retry, 135
float, 135
ipchange, 135
ip-win32, 136
local, 135
lport, 136
nobind, 136
port, 136
proto, 135
remote, 135
remote-random, 135
resolv-retry, 135
rport, 136
shaper, 136

parameters, user and group
group, 141
user, 141

255

parameters, Windows clients
dhcp-option, 153
ip-win32, 153
route-method, 153

phpLDAPadmin, LDAP administration tools, 213
pkg_add command, OpenVPN FreeBSD

installation, 64
PKI, 14
PKI management with XCA, 200
Point to Point Tunneling Protocol (PPTP), 13
Point-to-Point Protocol (PPP), 13
policy configuration file, Webmin, 174
port option, OpenVPN configuration file, 156
port parameter, OpenVPN proxy

configuration, 210
port scanners, troubleshooting, 236
PPTP, 13
prerequisites, OpenVPN installation, 39
privacy, VPN security, 18
problems. See troubleshooting
protocol file, troubleshooting, 234
proxy configuration, OpenVPN, 210
proxy parameters, OpenVPN, 143
Public Key Infrastructures (PKI), 14
push/pull options, OpenVPN Version 2

features, 31
pushing configuration parameters, OpenVPN, 152

R
Redhat Fedora, OpenVPN installation, 52
redirect-gateway parameter, client

configuration, 215
Remote Access Servers (RAS), 6
remote, configuration parameter, 82
Request for Comments (RFCs), 13
resources, online

configuration, 245
GUIs, 249
network tools, 247
OpenVPN, 242
scripts, 247
tutorials, 248
VPN basics, 241

Revocation lists tab, XCA, 201
revoking certificates

TinyCA2, 207
XCA, 200

RFCs, 13
route command, troubleshooting, 228

route option, OpenVPN configuration file, 156
routing parameters, OpenVPN, 137
routing, troubleshooting, 230
rpm command, Redhat installation, 53
rpm command, using, 57
RPM files, building your own, 71
rpmbuild command, advanced OpenVPN

installation, 71
RSA Keys section, XCA, 200
rules configuration file, Webmin, 174

S
sample configuration file, 81
sample connection, 80
scripting configuration, OpenVPN, 211
scripting parameters, OpenVPN, 139
scripts, online resources, 247
secret, configuration parameter, 82
Secure Sockets Layer (SSL), 15
securing OpenVPN, 155
Security error, Mozilla, 22
security, VPN

assymetric encryption, 20
authentication, 19
Certificate Revocation List, 25
goals, 17
privacy, 18
reliability, 19
SSL/TLS security, 20
symmetric encryption, 18

self-signed certificates, SSL/TSL security, 23
server mode parameters, OpenVPN, 148
shaper option, OpenVPN configuration file, 157
Shorewall Firewall module

about, 165
adding firewall rules, 171
creating zones, 167
default policies, 169
editing interfaces, 168
troubleshooting, 173

Shorewall project, Linux firewalls, 34
show-ciphers parameter, OpenVPN

configuration file, 156
show-digests parameter, OpenVPN

configuration file, 156
show-tls parameter, OpenVPN configuration

file, 156
signed certificates, SSL/TSL security, 22
simple TLS mode, OpenVPN configuration, 134

256

socks-proxy <IP> <port> parameter,
OpenVPN proxy configuration, 210

socks-proxy-retry parameter, OpenVPN proxy
configuration, 210

squid proxy configuration, 210
SSL command line parameters,

OpenVPN, 145
SSL/TLS encryption, VPN security, 20
SSL/TLS security

certificates, 21
self-signed certificates, 23
trusted certificates, 21

static open key, generating a, 78
SuSE Linux Installation, OpenVPN

YaST, 49
SuSEfirewall, 175
System Services editor, YaST System module, 101

T
Tap device, OpenVPN networking, 32
TCP, 10
tcpdump command, troubleshooting, 232
third-party authentication, SSL/TSL security, 23
TinyCA2, certificate management

creating new certificates and keys, 204
exporting certificates and keys, 207
importing a CA, 202
revoking certificates, 207

tls-auth option, OpenVPN configuration file, 156
tls-remote, OpenVPN configuration file, 156
tls-server, OpenVPN configuration file, 156
traceroute command, troubleshooting, 231
tracert command, troubleshooting, 232
Transmission Control Protocol (TCP), 10
Transport Layer Security (TLS), 15
transport mode, IPsec, 15
troubleshooting

iptables, 179
monitoring tools, 237
network connectivity, 227
network interfaces, 229
network sniffer, 232
OpenVPN verbosity, 234
parameters, 133
port scanners, 236
routing, 230
routing and firewalls, 179
scanning servers, Nmap, 236

Shorewall troubleshooting, 173
SuSE Linux firewall, 106
tcpdump, 232
traceroute, 231
tracert, 232
Windows XP SP2 firewall, 105

trusted certificates, SSL/TSL security, 21
trusted certificates, XCA, 192
Tun device, OpenVPN networking, 32
TUN/TAP devices, enabling Linux kernel

support, 72
TUN/TAP driver, OpenVPN networking, 32
tunneling

about, 11, 77
tunnel control parameters, OpenVPN, 132,

138, 139
tunnel mode, IPsec, 14
tunnel options, OpenVPN parameters, 135
tunneling a proxy server, configuration, 209
tunnelling standards, 13

tutorials, online resources, 248

U
UDP, 10
Universal TUN/TAP driver, 32, 74
unix2dos utility, 90
up option, scripting, 212
User Datagram Protocol (UDP), 10
user parameters, OpenVPN, 141
username/password pairs, testing with

ldapwhoami, 213

V
vars.bat

Linux, 122
Windows XP, 111

verbosity, OpenVPN protocol debugging, 234
Virtual Entity Networks Inc. (VEN Inc.), 7
Virtual Private Network (VPN)

about, 5, 7
OSI Layer 2 protocols, 13
security, 17
uses, 9
working, 7

VPN, 7
VPN connection, 80
VPN security, 17

257

X

W
X509 certificate management, 187 Webmin, Linux administration tool
XCA about, 99, 158

creating a database, 190 configuration, 160
importing a CA certificate, 191 configuring Shorewall, 165
installing, 187 creating a user, 164
revoking certificates, 200 installation, 158
signing a server/client certificate, 195 SSL encryption, 163

starting, 161
wget command, Redhat installation, 53 Y Windows firewall, OpenVPN, 182
Windows, OpenVPN installation YaST firewall, 175

client/server installation, 43 yum command, Redhat installation, 53
downloading, 41
installation wizard, 41 Z selecting components, 42
testing, 45 Zerina, Linux firewalls, 34 Windows specific parameters, OpenVPN, 153 zones configuration file, Webmin, 174 Windows to Linux connection, 86 zones, Shorewall Firewall module, 167 wireless LAN (WLAN), VPN security, 17

258

	OpenVPN
	Table of Contents
	Preface
	What This Book Covers
	What You Need for This Book
	Conventions
	Reader Feedback
	Customer Support
	Errata
	Questions

	Chapter 1: VPN—Virtual Private Network
	Branches Connected by Dedicated Lines
	Broadband Internet Access and VPNs

	How Does a VPN Work?
	What are VPNs Used For?
	 Networking Concepts—Protocols and Layers
	Tunneling and Overhead

	 VPN Concepts—Overview
	A Proposed Standard for Tunneling
	Protocols Implemented on OSI Layer 2
	Protocols Implemented on OSI Layer 3
	Protocols Implemented on OSI Layer 4
	OpenVPN—An SSL/TLS-Based Solution

	Summary

	Chapter 2: VPN Security
	VPN Security
	Privacy—Encrypting the Traffic
	Symmetric Encryption and Pre-Shared Keys
	Reliability and Authentication
	The Problem of Complexity in Classic VPNs

	Asymmetric Encryption with SSL/TLS

	SSL/TLS Security
	Understanding SSL/TLS Certificates
	Trusted Certificates
	Self-Signed Certificates
	 SSL/TLS Certificates and VPNs

	Summary

	Chapter 3: OpenVPN
	Advantages of OpenVPN
	History of OpenVPN
	OpenVPN Version 1
	OpenVPN Version 2

	 Networking with OpenVPN
	OpenVPN and Firewalls
	Configuring OpenVPN
	Problems with OpenVPN

	OpenVPN Compared to IPsec VPN
	Sources for Help and Documentation
	The Project Community
	Documentation in the Software Packages

	Summary

	Chapter 4: Installing OpenVPN
	Prerequisites
	Obtaining the Software
	 Installing OpenVPN on Windows
	Downloading and Starting Installation
	Selecting Components and Location
	Finishing Installation
	Testing the Installation—A First Look at the Panel Applet

	Installing OpenVPN on Mac OS X (Tunnelblick)
	Testing the Installation—The Tunnelblick Panel Applet

	Installing OpenVPN on SuSE Linux
	 Using YaST to Install Software

	Installing OpenVPN on Redhat Fedora Using yum
	Installing OpenVPN on RPM-Based Systems
	Using wget to Download OpenVPN RPMs
	Testing Installation and Installing with rpm
	Installing OpenVPN and the LZO Library with wget and RPM
	Using rpm to Obtain Information on the Installed OpenVPN Version

	Installing OpenVPN on Debian
	Installing Debian Packages
	Using Aptitude to Search and Install Packages
	OpenVPN—The Files Installed on Debian

	Installing OpenVPN on FreeBSD
	Installing a Newer Version of OpenVPN on FreeBSD—The Port System
	Installing the Port System with sysinstall
	Downloading and Installing a BSD Port

	 Troubleshooting—Advanced Installation Methods
	Installing OpenVPN from Source Code
	Building Your Own RPM File from the OpenVPN Source Code
	Building and Distributing Your Own DEB Packages
	Enabling Linux Kernel Support for TUN/TAP Devices
	Using Menuconfig to Enable TUN/TAP Support

	Internet Links, Installation Guidelines, and Help
	 Summary

	Chapter 5: Configuring an OpenVPN Server—The First Tunnel
	OpenVPN on Microsoft Windows
	Generating a Static OpenVPN Key
	 Creating a Sample Connection
	 Adapting the Sample Configuration File Provided by OpenVPN
	Starting and Testing the Tunnel

	A Brief Look at Windows OpenVPN Network Interfaces

	Connecting Windows and Linux
	File Exchange between Windows and Linux
	 Installing WinSCP
	Transferring the Key File from Windows to Linux with WinSCP
	The Second Pitfall—Carriage Return/End of Line

	Configuring the Linux System
	Testing the Tunnel
	A Look at the Linux Network Interfaces

	Running OpenVPN Automatically
	OpenVPN as Server on Windows
	OpenVPN as Server on Linux
	Runlevels and init Scripts on Linux
	Using runlevel and init to Change and Check Runlevels
	The System Control for Runlevels
	Managing init Scripts

	Using Webmin to Manage init Scripts
	Using SuSE's YaST Module System Services (Runlevel)

	Troubleshooting Firewall Issues
	 Deactivating Windows XP Service Pack 2 Firewall
	Stopping the SuSE Firewall

	 Summary

	Chapter 6: Setting Up OpenVPN with X509 Certificates
	Creating Certificates
	 Certificate Generation on Windows XP with easy-rsa
	Setting Variables—Editing vars.bat
	Creating the Diffie-Hellman Key
	Building the Certificate Authority
	Generating Server and Client Keys

	Distributing the Files to the VPN Partners
	Configuring OpenVPN to Use Certificates
	Using easy-rsa on Linux
	Preparing Variables in vars
	Creating the Diffie-Hellman Key and the Certificate Authority
	Creating the First Server Certificate/Key Pair
	Creating Further Certificates and Keys

	Troubleshooting
	Summary

	Chapter 7: The Command openvpn and its Configuration File
	Syntax of openvpn
	 OpenVPN Command-Line Parameters

	 Using OpenVPN at the Command Line
	Parameters Used in the Standard Configuration File for a Static Key Client
	Compressing the Data
	Controlling and Restarting the Tunnel
	Debugging Output—Troubleshooting

	Configuring OpenVPN with Certificates—Simple TLS Mode
	Overview of OpenVPN Parameters
	General Tunnel Options
	Routing
	Controlling the Tunnel
	Scripting
	Logging
	Specifying a User and Group
	The Management Interface
	 Proxies
	Encryption Parameters
	Testing the Crypto System with --test-crypto
	SSL Information—Command Line
	Server Mode
	Server Mode Parameters
	--client-config Options

	Client Mode Parameters
	Push Options

	Important Windows-Specific Options
	Summary

	Chapter 8: Securing OpenVPN Tunnels and Servers
	Securing and Stabilizing OpenVPN
	Linux and Firewalls
	 Debian Linux and Webmin with Shorewall
	Installing Webmin and Shorewall
	 Preparing Webmin and Shorewall for the First Start
	Starting Webmin
	Configuring the Shorewall with Webmin
	 Creating Zones
	Editing Interfaces
	Default Policies
	Adding Firewall Rules

	Troubleshooting Shorewall—Editing the Configuration Files
	OpenVPN and SuSEfirewall
	Troubleshooting OpenVPN Routing and Firewalls
	Configuring a Router without a Firewall
	iptables—The Standard Linux Firewall Tool

	Configuring the Windows Firewall for OpenVPN
	Summary

	Chapter 9: Advanced Certificate Management
	Certificate Management and Security
	Installing xca
	Using xca
	 Creating a Database
	Importing a CA Certificate
	 Creating and Signing a New Server/Client Certificate
	Revoking Certificates with xca

	Using TinyCA2 to Manage Certificates
	Importing Our CA
	Using TinyCA2 for CA Administration
	Creating New Certificates and Keys
	Exporting Keys and Certificates with TinyCA2
	Revoking Certificates with TinyCA2

	 Summary

	Chapter 10: Advanced OpenVPN Configuration
	Tunneling a Proxy Server and Protecting the Proxy
	Scripting OpenVPN—An Overview
	Using Authentication Methods
	Using a Client Configuration Directory with Per Client Configurations
	Individual Firewall Rules for Connecting Clients
	 Distributed Compilation through VPN Tunnels with distcc
	Ethernet Bridging with OpenVPN
	Automatic Installation for Windows Clients
	Summary

	Chapter 11: Troubleshooting and Monitoring
	Testing the Network Connectivity
	Checking Interfaces, Routing, and Connectivity on the VPN Servers
	Debugging with tcpdump and IPTraf
	Using OpenVPN Protocol and Status Files for Debugging
	 Scanning Servers with Nmap
	 Monitoring Tools
	ntop
	 Munin

	 Hints to Other Tools
	Summary

	Appendix A: Internet Resources
	VPN Basics
	OpenVPN Resources

	Configuration
	Scripts and More
	Network Tools
	Howtos
	Openvpn GUIs

	Index

